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 1. Character of light 
 

Light can be viewed in the form of electromagnetic waves or in the form of particles. 
We will begin with the characterization of light as electromagnetic waves. To 
understand the electromagnetic origin of light it is at first necessary to review the basic 
terms and laws of electromagnetic theory. Electromagnetic theory operates with electric 
and magnetic fields. Electric field E can be defined as such property of space which 
exerts a force FE on a charge q placed in it. The force is the well-known Coulomb force.  

   
 
 
      EF qE =   (1)                     
 
 
Similarly, magnetic field B is such property of space where a moving charge feels a 
force FL, called Lorentz force.  
 
 
 
                                                
                             (2) 
                                                                                     

    
 
 
 
The fields are characterized by electric field intensity E and magnetic flux density B. 
Both fields have their origins in electric charges. Electric field is created around a static 
charge, magnetic field originates from a moving charge.  
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Basic laws of the electromagnetic theory are concerned with non-stationary 
electric and magnetic fields, that is fields that change with time. The laws are based on 
simple phenomenological observations which are generalized and expressed in 
mathematic terms. 
 
Faraday’s law 

The law is based on the observation that movement of a metallic wire loop through 
magnetic field B generates current in the loop and voltage at the loop terminals. The 
voltage is called emf (electromotive force). Emf is proportional to the change of loop 
area A and/or to the change of the field B. 
 
 
 
 
                                                                  (3)                 
 
 
                                                    
The above observation can be generalized in the following way by imaging an abstract 
loop C which encloses an area A through which passes magnetic field B. The loop need 
no longer be a real conducting wire. It is an imaginary loop where the emf is related to 
electric field E via 
 
 
             (4) 
 
 
 
 
 
 
 
The right-hand side of Eq. (3) is now an integral of B over the area A, and the equation 
can be re-written as  

∫∫∫ ∫∫ ⋅
∂
∂

−=⋅−=⋅
AC A

d
t

d
dt
dd SBSBlE   (5) 

emf 

B
A 

dt
demf )( AB ⋅

∝

∫ ⋅=
C

demf lE
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The generalized Eq. (5) now expresses the fact that change of magnetic field creates an 
electric field. 
 
Ampere’s law 

The observation upon which Ampere’s law is based can be summarized by stating that 
magnetic field is generated in the vicinity of current carrying wire, and the two are 
related via vacuum permeability μ0 as 
           
                                                               (6) 
 
 
 
 
 
 
The law can be generalized in a similar way as Faraday’s law by imaging an abstract 
loop C which encloses an area A, through which passes a current J.   

The Eq. (6) can be again written in general 
form using integration of the current over 
the area A 
 
                (7) 
 
 
The nature of the current can be either 
convection current JC (motion of charges 
through real conductor) or displacement 
current JD.  

 
 

        (8) 
 
     

The displacement current is related to electric field (such as the one between condenser 
plates) as   

(9) 

JrB 02 μπ =

r 
B 

J

∫∫∫ ⋅=⋅
AC

dd SJlB 0μ

JC 
JD 

DC JJJ +=

tD ∂
∂

=
EJ ε
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Assuming no convection current in vacuum and using the Eq. (9) the Ampere’s law can 
be written as 

   ∫∫∫ ⋅
∂
∂

=⋅
AC

d
t

d SElB 00εμ   (10) 

with ε0 being vacuum permittivity. The equation states that changing electric field is 
accompanied by magnetic field. 
 
Gauss’s laws – electric and magnetic 

These laws describe the relationship between field flux and field source. Imagine a 
section of a water pipe with varying diameter and cross-sections A1 and A2 at both ends.  

Without a source inside the closed 
surface,          and flux 
through the enclosed surface is 
zero. 
 
 

In more general terms, total flux of electric field through an enclosed surface A is zero 
unless there are charges present inside the surface. Mathematically, this statement can 

be formulated as  
 
    (11) 
 
In the presence of source charges the equation (11) 
becomes  
 
    (12) 
 
where ρ represents the charge spatial density. For 
magnetic field there are no magnetic charges 
(monopoles) and the equivalent equation is written  

     as  
 
        (13) 
 
 
 

A1 

A

v1

v2 2211 vAvA =

0=⋅∫∫
A

dSE

0=⋅∫∫
A

dSB

∫∫∫∫∫ =⋅
VA

dVd ρ
ε 0

1SE
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Maxwell’s equations 

The set of equations representing the generalized Faraday’s and Ampere’s laws, together 
with the electric and magnetic Gauss’s laws are known as Maxwell’s equations in 
integral form.  

 ∫∫∫ ⋅
∂
∂

−=⋅
AC

d
t

d SBlE   (14) 

∫∫∫ ⋅
∂
∂

=⋅
AC

d
t

d SElB 00εμ   (15)  Maxwell’s equations  

∫∫∫∫∫ =⋅
VA

dVd ρ
ε0

1SE   (16)  in integral form 

0=⋅∫∫
A

dSB    (17) 

For further treatment it is helpful to get rid of the integrals and express the equations 
(14)-(17) in differential form. To be able to do that we have to invoke the so called 
Stokes theorem which relates the path and surface integrals of a variable F  

  ( )∫∫∫ ⋅×∇=⋅
AC

dd SFlF     (18) 

and Gauss’s divergence theorem which relates the surface and volume integrals 

  ∫∫∫∫∫ ⋅∇=⋅
VA

dVd FSF     (19) 

Applying (18) and (19) to (14)-(17) one easily obtains the Maxwell’s equations in 
differential form: 

t∂
∂

−=×∇
BE  (20)   

0ε
ρ

=⋅∇ E  (22) 

t∂
∂

=×∇
EB 00εμ    (21)   0=⋅∇ B  (23) 

In vacuum (in the absence of charges) the equation (22) becomes 

   0=⋅∇ E     (24) 
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Wave equation 

The equations (20-21) and (23-24) describe electric and magnetic fields in vacuum with 
no free charges present. The equations can be further manipulated and combined using 
the following vector operator identity 

  ( ) ( ) EEE 2∇−⋅∇∇=×∇×∇     (25) 

Using the Maxwell’s Eq. (24), the relation (25) simplifies to 

  ( ) EE 2−∇=×∇×∇      (26) 

Applying the operation ×∇  from the left on Eq. (20) and substituting the Eq. (21) into 
the right-hand side we obtain  

  2

2

00
2

t∂
∂

=∇
EE εμ       (27) 

The equation (27) relates space and time variations of electric field and as such 
resembles general equations used to describe wave phenomena. To describe a wave 
motion of velocity v, the μ0 and ε0 parameters would have to satisfy  

  001 εμ=v       (28) 

Using the known values of vacuum permeability and permittivity in the Eq. (28) one 
obtains for v the value of ~ 3x108 m/s, which corresponds to the known value of the 
vacuum speed of light. With the usual notation of c for the light speed in vacuum we can 
re-write the Eq. (27) as 

  2

2

2
2 1

tc ∂
∂

=∇
EE        (29) 

The Eq. (29) now represents the wave equation for electric field propagating at the 
speed of light. Similar wave equation can be derived for the magnetic field as well.  

 

Solutions of the wave equation 

Let us consider 1-dimensional wave equation  
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  2

2

22

2 1
t
u

vx
u

∂
∂

=
∂
∂       (30) 

The Eq. (30) has a general solution in the form of 

  
2

)()(),( vtxgvtxftxu ++−
=     (31) 

that is, it consists of waves propagating in the x and –x directions with velocity v.  
Let us now go back to the 3-dimensional problem and consider for simplicity a 

plane electric field wave propagating in the x direction. The plane character of the wave 
implies that for a given coordinate x and time t the electric field is constant in the y and 
z directions, E = E(x,t). Applying Maxwell’s equation (24) to this type of wave we find 

  0=
∂

∂
+

∂
∂

+
∂

∂
=⋅∇

z
E

y
E

x
E zyxE      (32) 

Since  0=
∂

∂
=

∂
∂

z
E

y
E zy  by the definition of the plane wave, 0=

∂
∂

x
Ex  and Ex is either 

constant or zero. However, the Ex = const. solution does not correspond to a traveling 
wave and thus the component in the propagation direction must be zero, 0=xE . The 
resulting plane wave is a transversal wave. To further simplify the problem, we may put 
Ez = 0 and write 

  ),(ˆ),( txEtx yyE =      (33)  

with ŷ  a unit vector in the y direction. Applying Maxwell’s equation (20) in Eq. (33) 
we obtain a single non-zero component 

  
t

B
x

E zy

∂
∂

−=
∂

∂
      (34) 

Therefore, the time-dependent magnetic field only has a component in the z direction, 
and the corresponding plane wave is also a transversal wave. It can be further shown 
that the electric and magnetic fields are perpendicular to each other and to the direction 
of propagation. 
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Solutions in the form of harmonic functions 

Harmonic functions are the simplest solutions of the wave equation (30). From now on, 
we can consider only one scalar component of the electric and magnetic fields and one 
propagation direction. The direction can be specified by a unit vector if necessary. 
Electric field propagating in the x direction can be written as 

  )(cos0 vtxkEE −=      (35) 

E0 is amplitude of the wave, and k is a factor ensuring that the argument of the cosine 
function is dimensionless. Distance over which the wave repeats itself is called 
wavelength λ. 

 

 

 

 

The definition of wavelength leads to 

 ( )( ) ( )( )πλ 2coscos)(cos 000 +−=−+=−= vtxkEvtxkEvtxkEE  (36) 

from where we obtain a definition of the propagation number k 

  
λ
π2

=k        (37) 

Time necessary for one wavelength to pass is called period τ and number of waves per 

E0 
x

wavelength λ 
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unit time is frequency ν. Finally, angular frequency ω is related to frequency via 2π. 

 v/λτ =   τν /1=   τππνω /22 ==    (38) 

In the field of optics, the Eq. (33) is often expressed using the angular frequency 

  )cos(0 tkxEE ω−=      (39) 

Another often used representation of the electric field is the complex representation 
based on the Euler’s formula θθθ sincos iei += : 

  )(
0

tkxieEE ω−=       (40) 

where it is implicitly assumed that the electric field corresponds to the real part of (40). 

 

Sources of electromagnetic waves 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moving charge is the source of magnetic field. Uniformly moving charge (at constant 
speed along a straight line) is the source of static magnetic field which does not give 
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rise to electric field. To produce time-dependent magnetic field, the charge in motion 
must be accelerating – either by changing speed or by moving along a curved line. The 
resulting magnetic field produces time-dependent electric field which in turn produces 
magnetic field etc., resulting in an electromagnetic wave. 

The simplest and most usual source of electromagnetic radiation is an oscillating 
electric dipole. For two charges q separated by distance d the oscillating dipole p can be 
expressed as 

 tqdtpp ωω coscos0 ==   (41) 

The radiated electric field depends on the spatial  
angle θ and distance r as 

  
r

tkrkpE )cos(
4

sin
0

2
0 ω

πε
θ −

=  (42) 

 

Electromagnetic spectrum 

The frequency with which the electric dipole oscillates determines the nature of the 
electromagnetic radiation and the various phenomena associated with it. Historically, 
radiation of different wavelengths has been discovered and named independently. The 
overview of the spectrum regions and corresponding energies, frequencies and 
wavelengths is given below. 
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Energy of light 

We have seen that light is a transverse electromagnetic wave with electric and magnetic 
fields perpendicular to each other. 

 

 

 

 

 

 

 

 

Using the harmonic function ( )( )tcxEEy −= /cos0 ω  in the Eq. (34) we obtain 
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( )( ) ( )( )∫ ∫ =−=−−=
∂

∂
−=

c
E

tcxE
c

dttcx
c

Edt
x

E
B yy

z /cos1/sin 0
0 ωωω    (43) 

This equation directly relates the electric and magnetic field components of an 
electromagnetic wave. Classical electromagnetic theory gives energy density (energy 
contained in unit volume) of the electric field as 

 20

2
EuE

ε
=        (44) 

and that of the magnetic field as  

 2

0

1 BuB μ
=       (45) 

Using the equations (28) and (43) it can be easily shown that uE = uB, i.e. the energy is 
evenly distributed between the electric and magnetic components. The total energy 
density is then 

  2
0Euuu BE ε=+=      (46) 

Let us define S as transport of energy per unit time T across a unit area A. 

 

 

 

 

 

 

 

 

  uc
TA

AcTu
areatime

volumedensityen
areatime

energyS ==
×

×
=

×
=

)(.  (47) 

and using the Eq. (44)-(46) we can write 

A

cT 
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  EBcS 0
2ε=       (48) 

The flow of energy should be in the direction of propagation of the electromagnetic 
wave, that is perpendicular to both E and B. This can be expressed by writing the Eq. 
(48) using vector notation 

  ( )BES ×= 0
2εc       (49) 

The vector S expressing the flow of electromagnetic energy is called Poyinting vector. 

 

Light intensity 

Light intensity I is defined as the Poyinting vector averaged in time over one period. It 
is expressed in the units of [W/m2]. Using the oscillating electric and magnetic fields in 
the form of )cos(0 tkxEE ω−= and )cos(0 tkxBB ω−=  we can write 

  2
0

0
0

2
000

2

2
)(cos1 EcdttkxBEcI εω

τ
ε

τ

τ =−== ∫S   (50) 

Light intensity decreases with a distance from point source as 

  2
0)(

r
IrI =       (51) 

This dependence which is a direct consequence of the Eq. (42) is known as inverse 
square law. 

 

Pressure of light 

Electromagnetic field of light interacts with charges in objects. Such charges start 
moving due to the presence of electric field. Once in motion, the charges feel force due 
the associated magnetic field. The direction of the force is in the direction of 
propagation of light. This light-induced force is the origin of the pressure of light. 
Mathematically, it can be expressed as 

  
c
IP =        (52) 
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Light as particles 

Light is absorbed and emitted by matter in discrete steps of energy. This experimental 
observation led to the idea that electromagnetic energy is quantized. Quantum particle 
of light is called a photon. One photon has an associated energy expressed as 

  ων h==Ε h       (53) 

where the constant h is called Planck’s constant. Its values are 

 34106262.6 −×=h Js  and  34100546.1 −×=h Js 

Light of a given frequency can have energy only in multiples of hν. Other basic 
characteristics of photon are zero charge, zero still mass, and spin equal to one (boson 
character). The energy of photon is related to a momentum p as 

  kh
c

h
c

p h===
Ε

=
λ

ν      (54) 

or in vector notation   

 kp h=        (55) 
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2. Propagation of light 

Refractive index 

We have derived in the preceding Chapter the wave equation for propagation of light in 
vacuum (Eq. (27)). The equation implies that in vacuum light propagates with the speed 

  
00

1
με

=c       (56) 

In a material medium, the speed of light is determined by material constants ε, which is 
permittivity or dielectric constant (function), and μ, which is permeability. The speed of 
light in material now changes to 

  
εμ
1

=v       (57) 

The ratio of c and v is known as the index of refraction n (or refractive index)  

 rrv
cn με

με
εμ

===
00

     (58) 

In (58), εr and μr are relative permittivity and relative permeability, respectively. The 
value of μr is generally very close to 1, and the Eq. (58) can be written in an 
approximate form as  

  rn ε=2        (59) 

The equation (59) is known as Maxwell’s relation. 

 

Refractive index dispersion 

The term dispersion relates to the dependence of refractive index on the wavelength (or 
frequency) of light. It has been first described by Newton in his experiment where white 
light incident upon a prism is dispersed into the constituent colors. 

 

 

 

red 
green

white 

blue
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To describe the dispersion phenomenon, an empirical relation was proposed by A. 
Cauchy in 1830. 

 ⎟
⎠
⎞

⎜
⎝
⎛ +≅⎟

⎠
⎞

⎜
⎝
⎛ +++=− 242 1...11)(

λλλ
λ BACBAn    (60) 

The equation is known as Cauchy’s formula and 
despite its simplicity it is being used in many 
problems concerning dispersion in transparent 
regions even today.  

 

 

Microscopic model of dispersion 

First microscopic model to describe the phenomenon of refractive index dispersion 
based on classical electromagnetic theory was developed by H.A. Lorentz, and is 
accordingly being called Lorentz oscillator model. In the model, it is assumed that in 
material medium, electrons in atoms are attached to the atomic nuclei via a classical 
spring, and that interaction with electromagnetic wave causes an oscillating motion of 
the electrons.  
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The equation of motion of the electron based on Newton’s second law is 

  RCm FFFa +==      (61) 

where the driving force F consists of Coulomb force FC due to the electric field and 
restoring force FR due to the spring. Since all the vectors in the equation (61) are 
parallel with the x axis we may drop the vector notation and write 

  xkeE
dt

xdm S−=2

2
     (62) 

where m is the electron mass and kS the spring constant. When pushed out of 
equilibrium the electron oscillates with natural frequency 

  mkS /0 =ω       (63) 

The equation of motion is thus a differential equation 

  eExm
dt

xdm =+ 2
02

2
ω      (64) 

or, with the oscillating form of electric field, 

  )cos(0
2
02

2
tkzeExm

dt
xdm ωω −=+      (65) 

Use of a trial solution in the form  

  )cos(0 tkzxx ω−=      (66) 

leads to the solution 

  ( ) ( ) EmetkzEmex
22

0
022

0

/)cos(/

ωω
ω

ωω −
=−

−
=   (67) 

Change of the equilibrium position of the electron results in an electric dipole moment p 

( ) EEmeexp α
ωω

=
−

==
22

0

2 /     (68) 

The term relating the electric field and resulting dipole moment is the frequency 
dependent atomic electron polarizability α 
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( )22
0

/)(
ωω

ωα
−

=
me      (69) 

The linear response of material to the incident light perturbation defines the realm of 
linear optics. In more general terms 

  ...)( +⋅+= EEEp βα      (70) 

where the higher-order terms are a subject of the field of non-linear optics. 
For an ensemble of N atoms, the individual atomic dipoles add to create a 

macroscopic polarization P 

  ENNpP α==       (71) 

On the other hand, classical electromagnetic theory gives the macroscopic polarization 
in the form 

  ( )EP 0εε −=       (72) 

or, after a slight modification 

  
E

P
r

0
1

ε
ε +=       (73) 

Now, using the equations (71), (73) and the Maxwell’s relation (59) we can write an 
expression for the refractive index 

  
0

2 1
ε
αNn +=        (74) 

or in the explicit form of frequency dependence 

  
2

1

22
00

2 11)( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+=

ωωε
ω

m
Nen     (75) 

The equation (75) is the sought after dispersion relation of the refractive index. 
Experimental data show several 
natural frequencies ω0i in the 
infrared-to-X-ray region of the 
electromagnetic spectrum, 
corresponding to different atomic 
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or molecular processes. For example, the frequency ω01 corresponds to vibrations of 
atoms in molecules while the frequency ω02 reflects the atomic or molecular electronic 
transitions. 
 
Damped oscillator model 

The experimental data are well described by the equation (75) in regions far from 
the resonance frequencies ω0i. In the vicinity of ω0i, the equation (75) predicts a 
singularity which actually does not occur. Thus, more complex treatment near resonance 
is necessary to describe the observed phenomena. The more complex treatment involves 
introduction of damping into the oscillator motion by adding a friction force FF on the 
right-hand side of the Eq. (61) 

  FRCm FFFa ++=      (76) 

The friction force is proportional to the velocity of the electron and acts along the x axis, 
thus 

  )(
0

2
02

2
2 kztieE

m
ex

dt
dx

dt
xd −−=++ ωωβ    (77) 

where we have used the complex notation for the electric field. We use a trial solution 

  )(
0

kztiexx −−= ω       (78) 

to obtain 

  ( ) ( ) E
i

meeE
i

mex kzti

βωωωβωωω
ω

2

/

2

/
22

0

)(
022

0 −−
=

−−
= −−  (79) 

The polarizability is now a complex observable 

  
βωωω

α
i

me
2

/
22

0

2

−−
=      (80) 

leading to a complex refractive index 

  ( ) 22222
0

22
0

0

2
2

4

21)(
ωβωω

βωωω
ε

ω
+−

+−
+=

i
m
Nen    (81) 

The refractive index is often written as a sum of the real and imaginary parts 
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Frequency ω

nR(ω)

nI(ω)

Cauchy's formula validity region

  )()()( ωωω IR innn +=      (82) 

The real part of the refractive index corresponds to what is understood under the term 
refractive index in the field of optics, and is responsible for such optical phenomena as 
refraction and reflection. The meaning of the imaginary part becomes evident by writing 
the oscillating electric field explicitly as a function of distance z using the refractive 
index instead of the propagation number k 

  )/(/
0

)/(
0)( tczniczntcnzi RI eeEeEzE −−− == ωωω    (83) 

The amplitude of the electric field now decreases exponentially with distance z. Since 
the intensity of light is given by the square of the amplitude we may write 

  zczn eIeIzI I )(
0

/2
0)( ωαω −− ==     (84) 

The equation (84) has the usual form of Lambert’s law where the absorption coefficient 
α(ω) is defined as 
  cnI /2)( ωωα =       (85) 

The imaginary part is due to absorption of light in matter and is studied in detail in the 
field of optical properties of materials. The real and imaginary parts together are often 
called optical constants. 

 
 
 
 
 
 
 
 
 

 
 
 
 
The origin of the friction force introduced arbitrarily in the classical model can be 

understood only in the frame of quantum mechanics. It is due to the loss of 
electromagnetic energy as a result of electronic transitions between quantum levels of 
atoms or molecules. 
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So far, we have assumed that the electric field acting upon the electron is equal to 
the electric field of incoming light wave. This approximation is true for isolated atoms 
or molecules but breaks down for interaction of light with dense media. In densely 
packed matter the local field that the atom feels is influenced by contributions from 
neighboring atoms. The dispersion relation in dense media where local electric field is 
different from the external field of the electromagnetic wave is described by 
Clausius-Mossotti formula 

  
0

2

2

3
)(

2)(
1)(

ε
ωα

ω
ω N

n
n

=
+
−      (86) 

instead of the simple relationship of the equation (74). 

 

Interaction of light with matter 

In classical optics, the propagation of light is associated with macroscopic interaction of 
light with transparent matter. The phenomena involved in the propagation are classified 
as scattering, refraction and reflection. 

 

Light scattering 

Scattering of light on particles with sizes much smaller than the wavelength of light, i.e., 
a << λ, is called Rayleigh scattering. An example is scattering of sunlight on molecules 
of air which causes the characteristic blue color of sky. Using the classical oscillator 
picture introduced in the previous section, an electron in the atom is driven into 
oscillating motion with the frequency ω of the incident light. The resulting oscillating 
electric dipole in turn emits light of the same frequency into all direction. The spatial 
distribution of the scattered light from one atom is given by the equation (42).  

  

 

 

 

 

 

 incident light 

scattering 
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In typical Rayleigh scattering experiments from bulk samples, light of incident intensity 
I0 irradiates a sample, and scattered light of intensity I is detected at an angle θ and 
distance r with a detector. 

 

 

 

 

Based on the theory of electric dipole radiation it is possible to express the intensity I as 
a function of wavelength, the angle θ and distance r. 
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where α is again polarizability. The strong wavelength dependence is responsible for the 
above mentioned blue color of sky. 

Scattering of light on particles with sizes comparable or larger than the 
wavelength of light is described by Mie scattering theory. The spatial distribution of 
scattered light intensity departs from the symmetrical shape given by the equation (87). 
With increasing particle size more light is being scattered in the forward direction than 
in the opposite direction. This phenomenon is known as the Mie effect. For large 
particles, practically all light is scattered in the forward direction at θ = 0. 
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With increasing particle size the dependence of scattered intensity on the wavelength 
weakens and is negligible for large-size particles (such as water droplets in clouds). Still, 
the spatial distribution of the scattered intensity is a function of a, α, λ, and 
measurements of scattered intensity as a function of the observation angle θ are a basis 
of many methods for material characterization. Light scattering methods are used to 
measure, for example, colloidal particle size, molecular weight of polymers in solutions, 
etc. 

 

Refraction and reflection 

The simplest treatment of the phenomena of refraction and reflection uses the concept 
of ray. Ray is a geometrical line connecting infinitely small parts of a plane wave as it 
propagates through space. Direction of the ray corresponds to the direction of the flow 
of light energy. 

Light ray incident on the interface between media of different refractive indices ni, 
nt undergoes reflection and refraction. The incident ray and a normal to the interface 
define the plane of incidence. 

 

 

 

 

 

 

 

 

The directions of the reflected and refracted rays are governed by two simple laws. The 
law of reflection states that angles of the incident and reflected rays are same, θi = θr, 
and that the reflected rays lie in the plane of incidence. The law of refraction, also 
known as Snell’s law, can be formulated as 

ttii nn θθ sinsin =       (88) 

and the refracted rays also lie in the plane of incidence. 
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The laws of reflection and refraction are a consequence of an important law in 
optics – the Fermat’s principle. The principle, alternatively called the principle of least 
time, states that the actual path taken by light between two points in space is the one 
which takes the least time for the light to travel. 

 

Electromagnetic approach to reflection and refraction 

The law of reflection and refraction simply determine the direction of light interacting 
with the interface. To get information about the amount of light going in each direction 
we have to consider the electromagnetic wave nature of light. We assume for simplicity 
the electric field in the form of plane waves. We than have to treat separately two cases, 
one where the direction of electric field oscillation is perpendicular to the plane of 
incidence, and the other where the oscillation direction lies in the plane of incidence. 

1. E perpendicular to the plane of incidence. 
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The oscillating electric fields in the incident, reflected and refracted waves can be 
expressed as 

 )cos(ˆ 0 tE iii ω−⋅= rkzE  

 )cos(ˆ 0 tE rrr ω−⋅= rkzE       (89) 

 )cos(ˆ 0 tE ttt ω−⋅= rkzE  

The laws of electromagnetic theory imply a set of boundary conditions for the fields at 
the interface. Specifically, components of electric field E and magnetic field H that are 
tangential to the interface must be continuous across it. Here, the magnetic field 
intensity H is related to B via HB μ= . For the present case of E perpendicular to the 
plane of incidence, all components of the electric field are tangential to the interface, 
and the continuity condition means that the total tangential components above and 
below the interface are equal. 

tri EEE =+       (90) 

which by elimination of the vector and oscillating components at y = 0 leads to 

  tri EEE 000 =+       (91) 

The condition of H gives 

  ttrrii HHH θθθ coscoscos −=+−    (92) 

where the signs reflect different orientations of the tangential components. Using 
HB μ= , recalling that  BE v= , making use of θi = θr and eliminating the oscillating 

components at the origin, the equation (87) can be re-written as 
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or using the refractive indices, and the fact that the permeabilities μi and μt have very 
similar values 

  ( ) tttirii EnEEn θθ coscos 000 =−     (94) 

We will now define amplitude reflectance as 
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and amplitude transmittance as 
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The equations (91) and (94) than give the Fresnel equations: 
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2. E parallel with the plane of incidence.  
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Fresnel equations for the case of electric field component lying in the incident plane can 
be derived analogically based on the relevant boundary conditions: 
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The Fresnel equations (97) – (100) describe changes in the amplitudes of electric field 
upon reflection and refraction on an interface. Apart from the amplitude change, there is 
also a change in the phase of the electromagnetic wave upon reflection, as shown  

without justification in the following figures: 

 

 

 

 

 

 

 

 

 

 

The quantity which can be experimentally measured is light intensity I, related to the 
electric field by the equation (50). Light intensity is energy normalized per unit area. 
Upon reflection and refraction, the total energy must be conserved. It is therefore useful 
to work with light power P defined as intensityⅹarea. According to the situation 
described in the figure, power in the incident, reflected and refracted (transmitted) 
beams is 

 iii AIP θcos=  

rrr AIP θcos=        (101) 

ttt AIP θcos=
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We define the quantities of reflectance R 
and transmittance T as 
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The reflectance and transmittance are 
related to the respective amplitude 
quantities as 
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The parallel and perpendicular components of R and T depend differently on the 
incident angle θi. For the parallel components there is an angle θP, called Brewster’s 
angle, at which the reflectance R|| is zero. This phenomenon is often used in polarization 
and laser optics. 
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The equations (104) and (105) take especially simple form for the case of normal 
incidence (θi = 0) from air (ni = 1): 
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For example, for glass of n = 1.5 the normal incidence reflectance is about 4%. 

 

Total internal reflection 

Total internal reflection (TIR) refers to the situation when the angle θt of the refracted 
(transmitted) light reaches π/2. Snell’s law can be used to determine the incident angle 
θi at which TIR occurs, that is at which sin θt = 1. This angle is called critical angle and 
denoted θc 
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Application of the Fresnel equation (105) for transmittance for the case of θt = π/2 gives 
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that is, no energy is transmitted into the nt space. An interesting situation occurs when 
we look at the Fresnel equations for amplitude transmittance. Using θt = π/2 we obtain 
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There is a seeming contradiction in equations (108) and (109)-(110), that is, while the 
transmitted energy is zero, the transmitted amplitude at the interface is non-zero. To 
examine this situation further we will look at the transmitted electric field Et in the form 
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In the equation and the figure, kt is the propagation vector of the transmitted light and 
kxt and kyt are its components along the x and y axes. For kxt and kyt we can write 

  ttttxt kk θθ sinsin == k      (112) 

  ttttyt kk θθ coscos == k      (113) 

Using goniometric identities and Snell’s law we can express 
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For the x-component we obtain using Snell’s law 
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The electric field Et can be now expressed as 
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The first exponential term in the equation (117) describes an electric field which decays 
exponentially in the y-direction. Light that penetrates to the nt space near the interface is 
called near field. The penetration distance is on the order of 1 wavelength. The 
associated electromagnetic wave is called evanescent wave.  

 

 

 

 

The second exponential term is an electromagnetic wave propagating along the 
x-direction with the wavelength  
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Frustrated total reflection 

From the above discussion it follows that energy may start propagating in the 
y-direction if another material medium is placed at a distance from the interface which 
is less or comparable to the wavelength of light in the nt medium. The phenomenon is 
called frustrated total reflection. 

 

 

 

 

 

Except TIR, other sources of evanescent waves include pinholes in metallic sheets with 
diameters d << λ, or metal coated pulled optical fibers, which are used as evanescent 
wave sources in near-field scanning optical microscopy (NSOM).  

 

Reflection from metals 

Reflection from metals is characterized by very high reflectance values. To understand 
the origin of the high reflectance we have to consider the refractive index in its complex 
form.  

 

 

 

 

 

 

 

)()()( λλλ IR innn +=      (119) 

So far, we have treated reflection from transparent materials for which 0)( =λIn . This 
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is not the case for metals. The Fresnel equation for reflectivity at normal incidence with 
complex refractive index has the form 
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For metals, the imaginary refractive index is comparable or larger than the real 
refractive index, RI nn ≥ , causing the reflectance to approach unity. Characteristic 
color of metals is determined by the wavelength dependence of nI. 

 

Applications of reflection and refraction I. Geometrical optics. 

The field of geometrical optics is concerned with basic optical elements such as lenses, 
mirrors and prisms, and their combinations, and treats the associated problems of light 
propagation and image formation using the concept of light rays. 

Lens. Lens is a part of space of refractive index nl defined by two surfaces which in the 
simplest case of spherical lens are spheres of radii R1 and R2.  

 

 

 

 

 

 

 

 

 

The magnitudes and signs of R1 and R2 determine the type of the lens (convex or 
concave). Each lens is characterized by its focal length f which defines object and image 
focal points Fo and Fi. Rays passing focal points propagate in parallel with the optical 
axis on the other side of the lens. 
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The passage of rays through a thin lens can be described by Thin lens equation, often 
referred to as Lens maker’s formula: 
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where so and si are distances of cross-sections of rays with the optical axis on the object 
and image sides, respectively. The focal length of the lens is also related to the 
magnification when an image is formed in the image space. 

 

 

 

 

 

 

The magnification M is given by  
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Mirrors 

A spherical mirror is characterized by its curvature radius R. The ray passage is 
described by Mirror formula:  
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Rays close to the optical axis 
compared to R define the so 
called paraxial region. In the 
paraxial region incident rays 
parallel with the optical axis will 
pass the focal point after 
reflection. The restriction of the 
paraxial region is lifted for 
parabolic mirrors, where all 
incident parallel rays are focused 
into the focal point (and vice 
versa). Paraboloids are used in 
many applications, such as 
flashlights and car headlights.   

Ray tracing 

An increasing number of optical elements in the optical system can greatly complicate 
treatment of the ray propagation through the system. Instead of solving equations for 
each element separately, it is possible to simplify the problem by using ray tracing 
method. The optical system is fully characterized by the angles θi, θo and distances from 
optical axis yi, yo of the incoming and outgoing rays.  

 

 

 

 

The quantities (yi, θi), (yo, θo) now form vectors. Each optical element can be described 
by a 2ⅹ2 transfer matrix Mj. The optical system as a whole is characterized by a matrix 
M which is a product of the transfer matrices of the N elements 

  121... MMMMM NN ⋅⋅= −     (124) 

and the solution of the problem is given by 
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Examples of the transfer matrices: 

Propagation in vacuum over distance d  ⎥
⎦
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1 d
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Refraction between media n1 and n2  ⎥
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Propagation through a thin lens f   ⎥
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Reflection from a spherical mirror R  ⎥
⎦

⎤
⎢
⎣

⎡
12
01

R
  (130) 

 



 40 

Applications of reflection and refraction II. Optical waveguides and fibers. 

Optical communication devices such as optical fibers, waveguides, switches or 
attenuators are one of the most important fields for optical applications of organic 
materials. Optical fibers are used mainly for light transmission while optical 
waveguides are parts of optical devices used for light modulation. Advantages of using 
light for information transmission include high capacity (~ 100 – 1000Mb/s) and low 
loss (~ 0.16 dB/km). 

 

 

 

 

 

 

Principle of an ideal planar waveguide 

An ideal planar waveguide is formed by two parallel planar mirrors with reflectance of 
1 separated by air. Let us assume that light propagates in the x direction and that the 
oscillating electric field points in the y direction, or perpendicular to the plane of 
incidence. 

 

  

 

 

 

 

We can use Fresnel’s equations for amplitude reflectance to find a condition for light 
propagation in the waveguide. The Fresnel’s equation (97) can be modified using 
Snell’s law and the condition that ni < nt into 
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The equation (131) shows that for ni < nt the amplitude reflectance ⊥r is negative for all 
values of the incident angle. For the planar waveguide considered above, R = 1 and 
consequently 1−=⊥r . From the amplitude reflectance definition it follows that 

  ri EE 00 −=       (132) 

and the reflected wave amplitude is negative. Using the usual notation for the oscillating 
fields we obtain 

  )cos(0 tkxEE ii ω−=      (133) 

  )cos()cos( 00 πωω −−=−−= tkxEtkxEE rrr   (134) 

The equation (134) shows that upon reflection the phase of the electric wave is shifted 
by π.  

Selfconsistency condition for propagation of light in a waveguide states that after two 
reflections, the phases of the original and reflected waves must be same or differ by 2π.  

 

 

 

 

 

 

Given the situation in the above figure, the phase of the original (incident) wave at point 
B with respect to point A can be expressed as  
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The wave twice reflected at points A and C has a phase at C in the form 
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The phase difference is thus 
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To satisfy the selfconsistency condition the phase difference must be an integer multiple 
of 2π. Using the fact that θsin2dABAC =−  we can re-write the equation (137) as 

  πθ
λ
ππϕ 2sin222 −==Δ dq     (138) 

where q = 0, 1, … Defining the mode m of the waveguide as m = q + 1, the equation 
(138) becomes 

  
d
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The equation (139) gives the condition for light propagation in an ideal waveguide. 
From there it follows that  

  dm 2≤λ        (140) 

Thus, if d2≤λ only one mode m = 1 can propagate in the waveguide and such 
waveguide is accordingly called a single-mode waveguide. 

The picture of light propagation in a waveguide as repeated reflections of a single 
ray is oversimplified. At each location there will be rays pointing upwards and 
downwards at the same time. Their respective propagation vectors can be written as 

  ),0,( zx kk=↑k   and  ),0,( zx kk −=↓k    (141) 

The combination of the electric fields of these rays will give the spatial 
distribution of electric field of light propagating in the waveguide.  

  mxk β==+= ↓↑ )(2/1 kkk     (142) 

where the propagation constant is newly denoted as βm. This can be expressed as 
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The electric field distribution for different modes is either symmetric or 
antisymmetric with respect to the propagation axis. 
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Planar dielectric waveguide 

Dielectric waveguide is made of two or more materials with different refractive indices 
and uses the phenomenon of total internal reflection on the interface between two 
media. 

 

 

 

 

 

 

Condition for the occurrence of total internal reflection gives the maximum incident 
angle θi = θmax of light which will be totally internally reflected inside the waveguide. 
The angle is called acceptance angle. Using Snell’s law we have 
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Using the Snell’s law for the waveguide – air interface gives 
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  22
maxsin oi nn −=θ      (146) 

The quantity sin θmax is called numerical aperture and abbreviated NA. The distribution 
of the electric field is similar to the ideal waveguide. The difference is at the interfaces 
where the existence of evanescent waves causes penetration of the electric filed into the 
neighboring medium.  
 
 
 
 
 
 
 
 
 

The evanescent waves can be used to couple two parallel waveguides and this 
phenomenon has important applications in optical communication devices. In the 
following arrangement, two planar waveguides are separated by a small distance which 
allows penetration of the electric field of waveguide 1 across the barrier into waveguide 
2. Pi denotes light intensity (power) in the respective waveguides. 

 

  

 

 

 

 

 

 

 

Optical coupling between the waveguides can cause complete periodic exchange of 
energy between the channels 1 and 2. Assuming that the initial power at x = 0 in channel 
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1 is P1(0), the dependence of power on distance x in both channels can be expressed as 

  xPxP Γ= 2
11 cos)0()(      (147) 

  xPxP Γ= 2
22 sin)0()(      (148) 

where Γ is a coupling coefficient. Graphically, this can be shown as 

 

 

 

 

 

Coupling of waveguides of an appropriate length can be used for optical switching or 
dividing.  

 

 

 

 

 

 

Optical fiber 

Optical fiber is essentially a cylindrical optical waveguide. Many of the concepts 
developed for optical waveguides can be used for optical fibers as well. Structure of a 
fiber cross-section is shown in the following figure. 
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Optical fibers are classified according to the refractive index profile into stepped index 
or graded-index fibers, and according to the number of modes into single-mode (core 
diameter 1 – 10 microns) and multi-mode (core diameter 50 – 200 microns) fibers. 
Numerical aperture can be defined in the same way as in the case of waveguides. 

 

 

 

 

 

 

 

 

 

 

Gradient index optics 

In gradient index optics the desired effects are achieved by graded changes of refractive 
index rather than by shapes of the optical elements. The best-known example is the 
radial graded-index lens (GRIN lens) which is a glass cylinder with refractive index 
n(0) in the center. The index decreases radially with distance r from the center towards 
the edges as 
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Light entering perpendicularly one side of the lens propagates in a sine-like path with 
the period a/2π inside the lens. 
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The length of the lens determines its function. The length is expressed in fractions of 
pitch p which is equivalent to the period a/2π . Radial GRIN lenses are 
commercially available and are widely used in laser printers, photocopiers, etc. 
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3. Polarization of light 

 

Polarization of light is determined by the direction of oscillation of the electric field. So 
far, we have considered the electric field vector aligned with one of the Cartesian 
coordinate axes and used a scalar notation. When treating polarization of light this 
approach will no longer be possible and we have to use vector representation for the 
electric field of light. If not stated otherwise light will be propagating in the z-axis 
direction. Electric field of light oscillating in the x-direction will be expressed as 

  )cos(ˆ 0 tkzE xx ω−= xE      (150) 

where x̂  represents a unit vector in the x direction. The equation (150) describes light 
linearly polarized in the x direction. When viewed against the direction of propagation 
this polarization state can be graphically represented as 

 

 

 

 

 

Light polarized in general direction is a vector sum of E in the x and y directions. 
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Using the notation of the equation (150) we can write 
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The equation (152) describes again linearly polarized light. 

 

 

 

 

 

 

 

 

 

Let us further consider generally oriented electric field with equal amplitudes in the x 
and y directions, 

  000 EEE yx ==       (153) 

We will examine the state of light in which the Ey vector is shifted in phase by -π/2 with 
respect to the Ex vector. 

  )cos(ˆ 0 tkzE xx ω−= xE      (154) 

  )2/cos(ˆ 0 πω −−= tkzE yy yE     (155) 

The total electric filed will now be  

( ))sin(ˆ)cos(ˆ0 tkztkzE ωω −+−= yxE    (156) 

The equation (156) is an equation of a circle with 
respect to the variables z and t. At a fixed point in space 
the vector E rotates clockwise with time along a circle 
at frequency ω. The corresponding state of light is 
called right circularly polarized light. 
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Similarly, if the Ey vector is shifted in phase by π/2 with respect to the Ex vector the 
resulting state of light is left circularly polarized light, described by 

  ( ))sin(ˆ)cos(ˆ0 tkztkzE ωω −−−= yxE    (157) 

It is now obvious from the equations (156) and (157) that a combination of right (R) and 
left (L) circularly polarized light produces a linear polarization with double amplitude: 
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)cos(2ˆ 0 tkzE ω−= xE      (158) 

 

 

 

 

 

 

Let us now go back to a general problem of arbitrary amplitudes yx EE 00 ≠  and 

arbitrary phase shift ϕ of the Ey vector with respect to the Ex vector.   
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)cos(ˆ 0 tkzE xx ω−= xE      (159) 

)cos(ˆ 0 ϕω +−= tkzE yy yE     (160) 

Omitting now the vector notation we can write 
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which leads to 
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Using the equations (162) and (163) in (161) and squaring we obtain 
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which leads to 
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The equation (165) is a general equation of an ellipse tilted with respect to the x axis by 
an angle α for which  

ϕα cos22tan 2
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yx

yx

EE
EE

−
=     (166) 

The resulting state of light is an elliptically polarized light. The ellipticity can be due to 
the difference in the electric field amplitudes and/or due to the general phase shift.  
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Let us now examine a few special cases. When the phase shift ϕ of the Ey vector is 
equal to 2/πϕ ±=  the tilt angle α  is zero and the polarization ellipse due to 

yx EE 00 ≠  is aligned with the coordinate system. 

 

 

 

 

When the phase shift is 2/πϕ ±=  and the amplitudes are equal, 000 EEE yx == , the 

equation (165) reduces to an equation of a circle 

2
0

22 EEE yx =+       (167) 

resulting in circular polarization.  

In the case of the phase shift πϕ =  and general amplitude yx EE 00 ≠ , the equation 

(165) reduces to 
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which describes linear polarization. The states of light characterized as linear and 
circular polarizations are thus special cases of general elliptical polarization of light. 
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Polarizers 

Polarizers are optical elements or devices that transform natural light into linearly 
polarized light. Natural light is characterized by random orientations of the electric field 
vectors.  

 

 

 
 
Polarizers utilize directional anisotropy of one of the following optical phenomena: 
- absorption 
- refraction 
- reflection 
 

Absorption based polarizers 

Absorption based dichroic polarizers make use of the anisotropy of absorption 
coefficient (or imaginary refractive index nI) of certain materials. The best-known 
example is a stretched film of oriented poly(vinyl alcohol) (PVA) saturated with iodine. 
Iodine attaches to the long-chain PVA molecules and forms an analogue of a conducting 
wire. Electric field oscillating in the direction of the PVA chains then causes motion of 
conduction electrons along the wire, by which the electric field is attenuated (absorbed). 
Natural light incident on such material emerges with only the electric field component 
perpendicular to the PVA chains remaining. The device prepared upon this principle is 
called a Polaroid sheet. The direction perpendicular to the PVA chains, that is, the 
direction of maximum light transmission defines a transmission axis. Other materials 
showing absorption anisotropy are crystals of some naturally occurring minerals, such 
as tourmaline. 
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Dependence of the intensity of natural light which passing two linear polarizers on the 
angle θ between the polarizers’ transmission axes is proportional to the square of the 
cosine of the angle. This dependence is sometimes called Malus’s law. 

  θθ 2
0 cos)( II =       (169) 

 

 

 

 

 

 

 

Refraction based polarizers 

Anisotropy of the refractive index (or, more specifically, of its real part nR) gives rise to 
the phenomenon of double refraction, or birefringence. Within the Lorentz oscillator 
model, anisotropy of the refractive index is related to different spring constants for the 
electron in different directions. 

 

 

 

 

 

 

The same treatment as in the Chapter 2. leads to three different components of refractive 
index along the three axes, nx, ny, nz. In some materials, the refractive index along two 
of the three axes can be same. Such materials are called uniaxial materials. According to 
the above figure, for example, the refractive indices along the y and z axes would be 
same, ny = nz. The remaining axis, the x direction, would form the optical axis. The 
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refractive index in the direction perpendicular to the optical axis is called ordinary 
refractive index no 

ozy nnn ==       (170) 

and the refractive index along the optical axis is called extraordinary index ne. The 
difference between ne and no is the measure of birefringence of a material. 

  ( )oe nnn −=Δ       (171) 

Birefringent materials can be both negative, such as calcite with Δn = -0.172, or positive, 
such as quartz. Calcite is probably the best-known example of a birefringent material. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Materials, such as mica, for which all three nx, ny, nz are different are called biaxial. The 
birefringence of biaxial materials is measured as a difference between the largest and 
smallest indices.  
 Calcite crystals are used as birefringent material in prism polarizers. The 
prototypical polarizer consisting of two cemented prisms was introduced by W. Nicol in 
1828, and is called Nicol prism. The incident natural light is divided by passing the first 
prism into ordinary o and extraordinary e rays due to different refraction angles of 
parallel and perpendicular electric field waves. The o-ray is totally internally reflected at 
the interface with the second prism while the e-ray is refracted, enters the prism and 
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exits it in the same propagation direction as the incident light. The result is a linearly 
polarized light.  

 

 

 

 

 

 

 

 

 

Glan-Thompson polarizer is based on similar principle. 

    

 

 

 

 

 

 

 

 

Reflection based polarizers 

Polarizers based on the phenomenon of reflection utilize the difference in reflectance of 
light with electric field perpendicular to and parallel with the plane of incidence. As we 
have seen in Chapter 2, there is an angle called Brewster’s angle for which the 
reflectance of light with the parallel-oriented electric field is zero. The appropriate 

Nicol prismNicol prism

Glan-Thompson prism 
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Fresnel equations can be written as 
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While ⊥R can never reach zero, R|| becomes zero for 2/πθθ =+ ti  when the tangent 
goes to infinity.  

 

 

 

 

 

 

 

 

 

This difference in reflectance is used in the so-called pile-of-plates polarizer where 
natural light incident at Brewster’s angle is reflected on multiple glass surfaces to 
enhance the intensity of the completely linearly polarized light. 
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Retarders 

Retarders, alternatively called phase retarders, are optical elements that induce a phase 
shift between the orthogonal components of the electric field of light. Retarders can be 
either single-component elements for fixed pre-determined phase shift (waveplates) or 
variable phase retarders for continuous phase adjustment (compensators). 

Wave plates 

Wave plates are parallel slabs of birefringent material of thickness d oriented with their 
optical axis perpendicular to the propagation direction of incident light. 

 

 

 

 

 

 

 

 

Electric field components Ex and Ey along the optical axis and perpendicular to it 
experience different refractive indices ne and no, respectively. Consequently, they 
propagate with different velocities ve and vo through the slab. Since both components 
have the same oscillating frequency ω, the difference in the velocities implies that the 
wavelengths of the two electric field waves must be different, oe λλ ≠ . As a result, 
upon exit from the slab the phases of the two waves will be different from the initial 
phases at the incidence. Using the notation of the oscillating electric field  

)cos(ˆ 0 xxx tkzE ϕω +−= xE     (174) 

)cos(ˆ 0 yyy tkzE ϕω +−= yE     (175) 

we define the phase difference at the incident surface as ϕ0 and that after passing 
distance d in the slab as ϕd.  
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  )(0 xy ϕϕϕ −=       (176) 

  )( xdydd ϕϕϕ −=       (177) 

Realizing that the wavelength of the electric waves inside the slab is related to vacuum 
wavelength λ0 via the refractive index as  

  λλ n=0        (178) 

we may write 
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and  

  nddndn exoyd Δ+=−−+=
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λ
πϕϕ   (181) 

Finally, the phase difference due to the slab will be 

  ndd Δ=−=
0

0
2
λ
πϕϕϕ       (182) 

 

Quarter-wave plate 

The quarter-wave plate (or λ/4 plate) has its length d adjusted so that the phase 
difference ϕ corresponds to one fourth of the wavelength, that is to 2/π± . There are 
two important special cases: 

1. The initial phase difference is zero, ϕ0 = 0, and the amplitudes of the Ex and Ey waves 
are same, E0x = E0y. This corresponds to linearly polarized light with the electric field E 
oscillating at 45 deg. with respect to the optical axis. Upon exit from the slab  

  2/0 πϕϕϕ ±=+=d    

that is, the phase shift between the Ex and Ey waves will be π/2 and the resulting state 
will be circularly polarized light.  
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2. The initial phase difference is ϕ0 = π/2, and the amplitudes E0x = E0y. This 
corresponds to circularly polarized light. Upon exit from the slab 

πϕϕϕ ,00 =+=d  

that is, the phase shift between the Ex and Ey waves will be 0 or π and the resulting state 
will be linearly polarized light.  

The main use of quarter-wave plates is to convert linear polarization to circular 
polarization and vice versa. Apart from the above two special cases, appropriate choice 
of the initial phase shift and/or initial amplitudes can lead to arbitrary elliptical 
polarization state. 

 

Half-wave plate 

The half-wave plate (or λ/2 plate) has the length d adjusted so that the phase difference 
ϕ corresponds to one half of the wavelength, that is to π± . We can again distinguish 
two special cases: 

1. The initial phase difference is ϕ0 = 0, and the amplitudes E0x = E0y. This corresponds 
to linearly polarized light. Upon exit from the slab 

πϕϕϕ ±=+= 0d  

that is, the phase shift 
between the Ex and Ey waves 
will be π± and the resulting 
state will be linearly 
polarized light with the 
electric field E oscillation 
direction rotated by 90 deg. 
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2. The initial phase difference is ϕ0 = -π/2, and the amplitudes E0x = E0y. This 
corresponds to right-circularly polarized light. Upon exit from the slab 

2/0 πϕϕϕ =+=d  

that is, the phase shift between the Ex and Ey waves will be π/2 and the resulting state 
will be left-circularly polarized light. The main use of half-wave plates is to change the 
direction of oscillation of linearly polarized light or to change the direction of rotation 
of circularly polarized light.  

 

Variable retarders - compensators 

Variable retarders are optical devices that can produce controllable phase shift to the 
incident light. The best known compensator, the Babinet compensator, is composed of 
two wedge prisms of birefringent material with the optical axes perpendicular to each 
other and to the propagation direction of light. Light incident from the top will pass 
distances d1 and d2 in the respective wedges. These distances can be continuously 
adjusted by sliding the wedges on top of each other. The phase shift can be expressed as 

   ( )21
0

2 ddn −Δ=
λ
πϕ       (183) 

A variation of the Babinet compensator is Soleil-Babinet compensator which has 
uniform retardance over its whole surface and experiences no beam deviation. 
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Mathematical description of polarization 

Complex polarization problems can be simplified by the use of a matrix based 
mathematical treatment. General polarization state of light E is determined by its 
constituent electric waves Ex and Ey (equations (174) and (175)) which, for the purpose 
of description of polarization, are fully characterized by their amplitudes E0x, E0y and 
phases ϕx, ϕy. We may thus omit the time and space dependent terms and re-write the 
equations (174) and (175) as 

   xi
xx eE ϕ

0x̂E =       (184) 

   yi
yy eE ϕ

0ŷE =      (185) 

It is convenient to define normalized electric fields Ax, Ay by 
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where ϕ is now the phase difference between Ex and Ey, ϕ =ϕy‐ϕx. The quantities Ax, 
Ay form a vector called Jones vector J which is used for the description of the 
polarization state of light 
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Examples of Jones vectors for linearly and circularly polarized light: 
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Change of the polarization state of light occurring upon passing optical elements can be 
described by assigning each element a 2ｘ2 matrix, the so called Jones matrix T. 
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The resulting polarization state of the output light J2 can be then easily calculated as a 
product of the Jones matrix T and Jones vector for the input light J1. 

   12 TJJ =      (194) 

Examples of Jones matrices for simple optical elements: 

Linear polarizer in x direction  ⎥
⎦
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⎢
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Linear polarizer at 45 deg. from x ⎥
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Wave plates    ⎥
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⎡
= Γ−ie0

01
T    (197) 

 2/π=Γ for quarter-wave plate, π=Γ for half-wave plate. 

 

Optical phenomena related to polarization: Optical activity 

Optical activity refers to the phenomenon of rotation of the direction of linearly 
polarized light by passing through material.  

 

 

 

 

 

 

Fresnel proposed a phenomenological model in which the linearly polarized light is 
treated as a superposition of right- and left-circularly polarized light 

  LR EEE +=       (198) 
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  ( ))sin(ˆ)cos(ˆ
2

0 tzktzkE
LLL ωω −+−= yxE    (200) 

Generally, the propagation numbers for left and right-circular light are different, 

RL kk ≠ , which means nonequivalent refractive indices RL nn ≠ . Thus, the velocity of 
propagation of the L and R waves is different and after passing a distance d in the 
material their rotation angles will be different. After superposition, the resulting linearly 
polarized light will be rotated by an angle β. 

   

 

 

 

 

 

The angle β normalized by the distance d is called optical rotatory power ρ  and is 
related to the difference in the refractive indices 

  ( )
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πβρ RL nn
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−
==      (201) 

 

Microscopic model of optical activity  

The simplest microscopic model of optical activity assumes that on molecular level the 
optically active medium is composed of conducting spirals, or helices. For example, the 
silicon and oxygen atoms in quartz are arranged in either right- or left-handed helix 
about the optical axis. Let us examine the interaction of the electric field of light with a 
helix oriented with its axis parallel to the direction of E oscillation. The field will cause 
electrons in the helix move up and down along the spiral, producing an oscillating 
electric dipole moment p(t) parallel to the axis and oriented in the same direction as the 
electric field. At the same time, the current due to the moving electrons will produce a 
magnetic field and an oscillating magnetic dipole moment m(t) parallel with the helical 
axis. However, the orientation of m(t) will either be in the same direction as p(t) or in a 
direction opposite to p(t), depending on the sense (left or right) of the particular 
molecular helix. Both oscillating dipoles p(t) and m(t) will give rise to orthogonal 

x 

y 

EEL 

ER x

y 

E 

EL

ER 
β  

input light   output light 



 66 

oscillating electric fields Ep(t) and Em(t). While the direction of Ep(t) will be 
independent of the helix sense, the direction of Em(t) will be reversed upon change from 
an L-helix to an R-helix. The vector sum of Ep(t) and Em(t) will give the electric field 
contribution due to interaction of light with the helix, 

   )()()( ttt mps EEE +=         (202) 

The direction of Es(t) will depend on the sense of the helix. Further, Es(t) will combine 
with the input light field Ei(t) to produce the total output light field E(t) 

   )()()( ttt is EEE +=        (203) 

As a result, the field E(t) will be rotated with respect to Ei(t) and the direction of 
rotation will be determined by the orientation of the field Es(t) and thus by the sense of 
the helix. 
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Faraday effect 

Faraday effect can be described as magnetically induced optical activity. An external 
magnetic field applied on material in the direction of propagation of light causes 
rotation of the direction of linearly polarized light.  

 

 

 

 

 

 

 

The angle of rotation β is proportional to the length d and magnetic field B via a 
material constant called Verdet constant V. 

   VBd=β         (204) 

The positive value of V corresponds to a material which causes right-hand rotation for 
light propagating in the direction of B and left-hand rotation for light propagating 
against B. The example in the above figure is thus for a material with a negative V. The 
reversal of handedness is the main difference between optical activity and Faraday 
effect, and can be exploited in, e.g., optical diodes. 
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Electro-optical effects 

Electro-optical effects refer to phenomena where externally applied electric field 
induces birefringence in a material. In Kerr effect the birefringence is proportional to the 
square of the applied field E via a Kerr constant K. 

   20KEn λ=Δ      (205) 

A Kerr cell based on this effect consists of a glass cell filled with a polar liquid and 
placed between orthogonally oriented polarizer and analyzer (crossed linear polarizers). 
The electric field is applied perpendicular to the propagation direction of light and at 45 
deg. with respect to the transmission axes of the polarizers. At zero voltage no light 
passes the cell. With increasing E the cell starts working as a continuous wave retarder 
and the cell transmits light accordingly. Kerr cells are used as high-speed shutters or 
Q-switches in pulsed lasers. 

 

 

 

 

 

 

 

Another important electro-optical effect is Pockels effect which occurs in certain 
non-centrosymmetric crystals. The birefringence is proportional to the first power of 
electric field applied in the direction of propagation of light. 
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4. Interference of light 

While in the preceding chapters we mainly treated interaction of light with matter, the 
phenomenon of interference can be viewed as interaction of light with light.  

 

General treatment of interference 

Let us imagine two sources of light, 1 and 2, emitting plane electromagnetic waves that 
propagate in directions given by the propagation vectors k1 and k2. The waves intersect 
at point P and we will be interested in electric field and light intensity of the resulting 
light wave at this point. 

 

 

 

 

 

 

 

 

 

 

The electric field of the waves 1 and 2 is described by 

  )cos( 11011 ϕω +−⋅= trkEE     (206) 

  )cos( 22022 ϕω +−⋅= trkEE     (207) 

The amplitudes E01 and E02 are written as vectors to describe the polarization (direction 
of electric field oscillation) of the two waves. The resulting electric field at point P will 
be given by a vector sum of the two waves 

  21 EEE +=       (208) 

Since the quantity we are able to detect is not electric field but light intensity, we have 

source 1 

source 2
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to re-write the equation (208) using 

  2/2
0

2 EI ==
τ

E      (209) 

where τ is the period of light and we have neglected the constants c and ε0 appearing in 
the equation (50). Expressing the square of E in the equation (208) leads to 
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The corresponding light intensities may be defined as  
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  τ2112 2 EE ⋅=I       (213) 

The intensity I12 is known as the interference term. Evaluating the time average in the 
equation (213) gives 
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We may now use the following properties of the cosine and sine functions 
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to obtain  
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which simplifies to 

 ( ) δϕϕ coscos 02012211020112 EErkrkEE ⋅=−⋅−+⋅⋅=I   (218) 

where we have defined the symbol δ as the phase difference between the electric field 
waves E1 and E2.  

The interference term intensity I12 is proportional to the dot product of the vector 
amplitudes E01 and E02 and depends thus on the polarizations of the two waves. For 
orthogonal polarization ( 0201 EE ⊥ ) the dot product is zero and there is no contribution 
from the interference term to the total intensity. In most common situations the two 
vectors E01 and E02 are parallel and we may drop the vector notation to write 

02010201 EE=⋅ EE . 
Using the definitions (211) and (212) the equation (218) can be written as 

  δcos2 2112 III =       (219) 

and the total intensity due to interference of the two light waves at point P will be 

  δcos2 2121 IIIII ++=      (220) 

We may now distinguish cases where cosδ = 1 and the equation (220) becomes 

  2121max 2 IIIII ++=      (221) 

The total intensity at point P is now larger than a mere sum of the intensities of the two 
waves. This situation of maximum interference intensity is known as constructive 
interference. On the other hand, in cases where cosδ = -1 the equation (220) describes 
the situation of destructive interference 

  2121min 2 IIIII −+=       (222) 

in which the interference intensity reaches its minimum and is smaller than the sum of I1 
and I2. In the special case of equal amplitudes E01 = E02 = E0 and equal intensities I1 = I2 
= I0 the equation (220) simplifies to 

  ( )δcos12 0 += II      (223) 

and the intensities at constructive and destructive interference conditions are 
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  0max 4II =   and  0min =I     (224) 

 

Conditions for interference 

Let us now examine in detail the conditions for constructive and destructive interference 
given by the phase difference δ 

  2121 ϕϕδ −+⋅−⋅= rkrk     (225) 

The phase difference depends on the path difference traveled by the two waves (given 
by the first two terms on the right-hand side of (225)) and on their initial phase 
difference ϕ1 - ϕ2. For the interference to be observable, the phase difference must be 
constant during the observation period of time. While for fixed light sources the path 
difference does not change the same cannot be said about the phases ϕ1, ϕ2. For 
example, for natural light ϕ1 and ϕ2 change rapidly with time. The properties of the 
phases ϕ are subject of the phenomenon of coherence of light.  

For the purpose of the current discussion it will be sufficient to imagine that light 
is described as coherent if the phases of all its constituent waves have a well-defined 
relationship that does not change with time. For the two waves considered here this 
well-defined relationship means that the difference ϕ1 - ϕ2 does not change with time. 
There is no form of light which would satisfy this condition. Therefore, we take definite 
intervals of time for which the light remains coherent and call these intervals coherence 
time. Similarly, the distance which light travels during the coherence time is called 
coherence length. In other words, coherent time is a time period for which the phases ϕ1 
and ϕ2 remain constant and coherence length is a distance upon which ϕ1 and ϕ2 do not 
change. The coherent length of natural light is on the order of or less than a few mm, 
the coherent length of laser light can be up to several km.  

Rigorous treatment of coherence requires the introduction of a normalized 
autocorrelation function for the time dependent electric field E(t) 
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which describes the amount of random change that occurred to the electric field in time 
T, that is, the value of g(T) reflects the degree of correlation between E(t) and E(t+T). 
The function g(T) decreases monotonously in time, and the characteristic time τc upon 
which the value of | g(T)| decreases to 1/e of | g(0)| is called coherence time. 

Summarizing the conditions for the observation of interference, that is conditions 
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for the non-zero term (218), we have found that: 
1. the waves E1, E2 must be coherent 
2. the polarizations of the waves E1, E2 cannot be orthogonal 

 

Natural interference phenomena 

Interference of light can be readily observed in everyday life as, for example, changes of 
color of soap bubbles or oil slicks on water surfaces. The phenomenon responsible for 
these effects is interference of natural white light on thin dielectric layers. The situation 
is described schematically in the following figure. 

  

  

 

 

 

 

 

 

 

 

Light is incident upon a dielectric layer of thickness d at an angle θi and is partly 
reflected (as the ray 1) and partly refracted at an angle θt at the surface. The refracted 
portion is again partly reflected at the back surface and after being refracted once again 
at the front surface it emerges as the ray 2 propagating parallel to the ray 1. Both rays 
are focused by a lens into the point P where they interfere.  

Let us examine the phase difference δ between 1 and 2 at the point P. We may 
assume that the thickness d is small enough so that the phase of the light ϕ will not 
change by passing the points A – B – C. This means that ϕ1 - ϕ2 and the equation (225) 
will become 

rkrk ⋅−⋅= 21δ       (227) 
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and the phase difference is only due to the path difference of the rays 1 and 2. Using the 
notation in the above figure we may write 

  ( )ADnBCABn it −+= )(2
0λ
πδ     (228) 

where we used the relationship 
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between the vacuum wavelength λ0 and propagation number k. We note that the 
quantity nr on the right-hand side of the equation (229) is called optical path. Since 
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the equation (228) becomes 
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and this simplifies using nt/λ0 = λ to 

  td θ
λ
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=       (232) 

The purely geometrical consideration that led to the equation (232) did not take into 
account the change of phase occurring upon reflection from the surfaces. Adding that, 
the final expression for the phase difference becomes 

  πθ
λ
πδ −= td cos4      (233) 

We may now use the equation (233) to find conditions for observing maxima and 
minima of the interference intensity. For the maxima we have 

 1cos =δ ,  which is true for mπδ 2= , m = 0,1,2…     (234) 

and this leads to 

  ( )
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12cos λθ += md t      (235) 
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Similarly, for the interference minima the condition 1cos −=δ  gives  

  
4

2cos λθ md t =       (236) 

The conditions (235) and (236) show dependence on the thickness of the layer, the 
refraction (and thus incidence) angle and wavelength of light. 

We will now examine special 
cases where one or two of the above 
parameters are fixed. In case of 
constant layer thickness d and a point 
light source of constant wavelength 
(monochromatic light) the situation 
is described in the figure on the right. 
If, for example, the angle θt1 satisfied 
the condition for intensity maximum 
(235) and the angle θt2 the condition 
for intensity minimum (236) one 
would observe a pattern of light and 
dark interference fringes (at points 
P1 and P2) on the screen below the 
focusing lens. This figure is only schematic. In real systems one observes large numbers 

of the fringes each 
corresponding to a certain 
angle θt. This type 
interference pattern is known 
as interference fringes of 
equal inclination as all rays 
inclined at the same angle 
arrive at the same point. 
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Next, we keep only the thickness of the dielectric film fixed and let the angles and 
wavelength vary. Specifically, we may examine the situation of point white light source. 
 
   

 

   

 

 

 

 

 

 

 

The maximum intensity condition may be now satisfied for different angles depending 
of the wavelength. Thus, for example, the angle θt1 might satisfy (235) for blue light and 
the angle θt2 for red light. The result will be dispersion of the incident white light into its 
constituent colors observable on the screen. The phenomenon described above is 
responsible for the changing colors of soap bubbles or oil slicks, as mentioned earlier. 

 

Optical instruments based on interference 

Interference based optical instruments make use of the fact that easily measurable 
change in interference light intensity reflects very small changes in the light path length. 
Let us consider the condition for interference maximum 1cos =δ . Generally, we may 
write 
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where d is the distance that one light ray traveled with respect to the other one. The 
difference in the distance d corresponding to successive appearance of interference 
maxima m, m + 1 is then 
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  λλλ =−+=Δ mmd )1(      (238) 

and the distance that would correspond to the intensity change between maximum and 
minimum will be half of that, that is λ/2. Since it is possible to measure intensity 
changes of much smaller magnitude that Imax-Imin, it is possible to measure accurately 
phenomena that are related to changes in distance on the order of nm. 

 

Michelson interferometer 

The best-known and historically most important interferometer is Michelson 
interferometer, schematically shown in the figure below. 

 

 

 

 

 

 

 

 

 

 

 

 

Light source provides light beam of intensity I0. The beam is divided equally into two 
arms by a beam splitter. In each arm it is reflected by a mirror. The beam reflected by 
the mirror M1 (beam 1) is again equally divided by the second pass of the beam splitter 
and half of it passes in the direction of the screen. The beam reflected from the mirror 
M2 (beam 2) is also divided by the beam splitter and half of it is reflected in the 
direction of the screen. At the screen the two beams interfere. Since the beam 1 passes 
the thickness of the beam splitter three times while the beam 2 only once, a 
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compensator of the same thickness and material as the beam splitter is placed at the 
same angle in the path of the beam 2. The lengths of the arms are L1 and L2, respectively, 
and the mirror M1 is placed on a micrometric stage so that the length L1 can be 
continuously adjusted. 

The intensities of beams 1 and 2 are same and we can use the equation (223) to 
express the dependence of the interference light intensity on the phase difference 
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Assuming that the path difference of beams 1 and 2 is smaller that the coherence length 
of the light we may use the equation (227) for the phase difference. Further, since the 
two beams propagate in the same direction their propagation vectors are same, and the 
equation (227) simplifies to 
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The additional factor of 2 in the equation (240) is due to the fact that the beam 1 passes 
the difference d twice. The condition for observation of the intensity maximum of 2I0 at 
the center of the screen will be 

  )(2 21 LLm −=λ       (241) 

Michelson interferometer played an important role in several basic experiments in 
physics (most importantly, in Michelson-Morley experiment which refuted the existence 
of luminous aether) and its use today is limited. 

 

Mach – Zehnder  
interferometer 

A configuration useful in 
many applications is found in 
the Mach – Zehnder 
interferometer. The beams 1, 2 
do not travel forth and back as 
in the case of Michelson 
configuration, and they can be 
well separated in space. 
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A transparent object placed into one beam will change the optical path difference and 
thereby the interference pattern. 

As seen in the equation (240) the phase difference is a function of the distance d, 
refractive index n and wavelength of the incident light. Interferometers are used for 
measuring values and changes in any of these parameters. A version of Michelson 
interferometer with one arm 50 m long has been built in the Suzukakedai campus of 
Tokyo Institute of Technology to measure small distance variations caused by 
earthquakes. Sensitivity to small changes in distance can be used to check flatness of 
quality of optical surfaces. Mach-Zehnder interferometers are used for measurements of 
refractive indices of gases or to monitor plasma changes during thermonuclear 
reactions. 

 

Multiple-beam interference 

So far, we have considered interference between two light beams. In many cases, this 
treatment results in oversimplification of the problem. For example, in treating the 
interference on dielectric layer we have neglected consecutive secondary reflections and 
refractions of the refracted light beam. Including these secondary light beams 
complicates the solution but at the same time reveals new phenomena and leads to new 
applications of interference. 

Let us consider the situation in the following figure. Light of the electric field E0 is 
incident upon a parallel dielectric film at an angle θi. The light will be repeatedly 
reflected and refracted with 
amplitude external and 
internal reflectances and 
transmittances of r, r’, t, t’, 
respectively. The electric 
field waves are denoted as 
E1r, E2r, … for reflection and 
E1t, E2t, … for transmission. 
We will be interested in the 
electric field and intensity of 
light resulting from the 
interference of the reflected 
light, and of the transmitted 
light. 
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Assuming that double passage through the film gives rise to a phase difference δ (that is, 
phase difference between adjacent rays) we may write for the electric field of the 
reflected waves 
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The resultant electric wave will be a sum of all contributions in the equation (242) 
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This can be re-written as  
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This equation contains a geometrical series of the type ...1 32 ++++ aaa  which is 
convergent when |a| < 1 and the sum is equal to 
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Assuming that 1'2 <− δier  the equation (244) can be re-written as   
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Further, if the dielectric film does not absorb light, we may take r = -r’ and tt’ = 1 - r2 
and the equation (246) simplifies to 
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Finally, using 2/*
rrr EEI =  for the reflected interference intensity we obtain  
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where Ii represents the incident intensity.  
We could follow the treatment given above also for the transmitted electric field 

waves. We would obtain for the transmitted intensity 
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We could further use the trigonometric identity )2/(sin21cos 2 δδ −=  to manipulate 

the equations (248) and (249) into 
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where we have defined the term F as coefficient of finesse 
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The dependence of Ir/Ii and It/Ii on the phase difference δ is shown in the following 
figures.  
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With increasing reflectance r2 of the surfaces the transmitted light is concentrated into 
increasingly sharp transmission regions (spikes) and the reflected light at the same time 
shows sharp reflection dips. 

 

Fabry-Perot interferometer 

The above properties of multi-beam light interference are utilized in an important device, 
the Fabry-Perot interferometer. The interferometer consists of two plane parallel 
surfaces of high reflectance r separated by an adjustable air gap of width d. Devices 
where the distance d is fixed are called Fabry-Perot etalon. Etalons can be also made of 
a single quartz plate with parallel surfaces which are coated with metal for increased 
reflectance. Both etalons and interferometers make use of the narrow transmittance 
peaks. Recall that the phase difference δ is a function of the distance d, refractive index 
n and wavelength of the incident light (equation (240)). The wavelength dependence of 
transmission of Fabry-Perot interferometers is used, for example, in high resolution 
spectroscopy. The most important application of Fabry-Perot etalons is their use as laser 
resonator cavities. Here, the narrow transmission peaks are responsible for the spectrally 
sharp monochromatic nature of laser light. 

 

 

 

Fabry-Perrot 
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Applications of interference on dielectric thin films 

One of the most important applications of interference on dielectric film is as 
anti-reflection coating on, e.g., glasses, camera lenses, etc. The material and thickness 
of the dielectric film can be chosen so that the reflected rays interfere destructively upon 
normal incidence. 

 

 

 

 

 

 

 

 

It can be shown that for normal incidence and for the thickness of the film d = λ/4 (that 
is, ndd = λ0/4) the reflectance from the film-coated substrate is  
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Thus, if sod nnn =2  the reflectance R = 0. For example, the MgF2 coating (nd = 1.38) of 

glass can reduce its reflectance from 4% to about 1 %. The thickness of the film is 
chosen so that reflection is most suppressed in the yellow spectral region where human 
eye is mot sensitive. For antireflection coatings that would cover broader spectral ranges 
and that would suppress reflectance further it is necessary to use multi-layer coatings. 

 

Multiple dielectric layers 

Multiple layers are stacks of alternating high refractive index (nH) and low refractive 
index (nL) layers of different thickness dL, dH so that 

  4/0λ=HH dn   4/0λ=LLdn    (254) 
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and nH > nS > nL > no. The conditions are adjusted for constructive interference on 
reflection. The spectral width of the reflected light Δλ increases with the ratio nH/nL 
while the reflectance increases with the number of layers. Multiple dielectric layers are 
used as spectrally selective mirrors in laser resonators or as optical filters. 

 

 

 

 

 

 

 

 

Interference filter 

An interference filter is a combination of multiple dielectric layers serving as mirrors in 
Fabry-Perot etalon of the thickness λ and of an absorbing color glass. The narrow 
thickness of the etalon ensures that the transmission peaks of the etalon are well 
spectrally separated. The color glass then absorbs all but one of the peaks. The filter 
selects from white light a single sharp peak of the width of about 10 nm and 
transmittance on the order of 30 – 50%.   
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5. Diffraction of light 

Diffraction usually refers to phenomena which occur when light interacts with precisely 
defined geometrical objects, such as sharp edges, slits, pinholes, etc. These objects 
modify propagation of light and cause interference between light waves propagating in 
different directions. In many senses, the phenomena of interference and diffraction are 
very similar and their distinction in many cases, such as, for example, diffraction on 
grating, is more or less historical. 

 

Huygens principle 

The simplest explanation of the diffraction phenomena is based on a principle formed in 
1690 by C. Huygens. It states that every point of propagating electromagnetic wave is a 
source of secondary spherical waves, and the original wave at a later time is an 
envelope of these spherical waves. A planar uninterrupted wave is an envelope of 
infinite number of secondary waves. Upon incidence on small objects, however, the 
number of secondary waves in question becomes finite and the resulting wave is no 
longer a planar wave. The interference between different parts of the non-planar wave is 
the origin of diffraction phenomena.  
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Diffraction on a slit 

The previous figure is a gross oversimplification because even though the number of 
secondary waves is finite, their size has to be taken very small and their number is still 
very large. The problem of light diffraction on a slit can be analyzed using the following 
scheme. 

 

 

 

 

 

 

 

 

 

 

 

The slit is oriented along axis z and its width is D. We will examine the contribution to 
the diffracted light which comes from secondary spherical waves along an imaginary 
line aligned with the axis y at z = 0. The line is thus a cross-section of the slit at z = 0, 
and stretches from y = –D/2 to y = D/2. The diffracted light intensity is examined at a 
point P which is at distance R from the center of the slit. We will be interested in the 
changes of light intensity at the point P as the point moves further from the axis x, that 
is as the angle θ increases. To obtain the intensity dependence on θ it is necessary to 
first express the electric field E at the point P. For that purpose, the length D is divided 
into infinitesimal segments dy. The electric field dE due to dy can be expressed as 
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where εL, called source strength, is electric field per unit length at x = 0. The electric 
field decreases with the inverse of the distance r from dy to P, as expected for a 
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spherical wave. For further convenience, the oscillating component is expressed using a 
sine function. In the equation (255) εL/r is the amplitude of the infinitesimal field. We 
will restrict our discussion to situations where R >> D. There, the values of r and R are 
similar for any θ and we can approximate the amplitude with εL/R. The most difficult 
point about the equation (255) is the dependence of r on the actual position of dy, that is 
on the value of y. Since r is part of the argument of the sine function it will contribute to 
the phase changes between electric field originating from different dy. To overcome this 
problem we will have to express r explicitly as a function of y and θ. First, we can use 
the law of cosines to obtain 
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The equation (257) can be now expanded using the Maclaurin series 
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to obtain 

  ...cos
2

sin 2
2

++−= θθ
R

yyRr     (259) 

For large R the contribution of the third term on the right-hand to the phase can be 
neglected even for y = D/2. The resulting expression for r  

   θsinyRr −=       (260) 

can be now used in the equation (255) 

  dyyRkt
R

dE L ))sin(sin( θωε
−−=     (261) 

To obtain the electric field E at the point P as a function of the angle θ the equation 
(261) must be now integrated with respect to y along the width of the slit, that is 
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The integration results in 
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We can abbreviate 
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to write 
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Intensity of light at point P is obtained by time-averaging the square of the electric field 
in equation (265) which leads to 
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For θ = 0 
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Using this, we may write the final expression for the dependence of intensity of 
diffracted light on diffraction angle as 
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The function 
α

αsin  is sometimes called sine cardinal function and written as sincα. 

The equation (268) was obtained on basis of the approximation R >> D. This is the so 
called Fraunhofer approximation and the corresponding diffraction phenomena are 
Fraunhofer diffraction phenomena. This approximation means that both incident light 
and diffracted light can be approximated by planar waves. Since any wave can be 
considered a planar wave at long enough distances, the Fraunhofer diffraction is also 
referred to as far-field diffraction. The experimental arrangement for diffraction on slit 
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is shown in the following figure.  

 

 

 

 

 

 

 

 

 

 

The diffraction intensity dependence on θ has a strong maximum at θ = 0 and a series of 
maxima and minima to both sides.  
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Since there is no dependence on the z axis in the equation (268), the slit can be 
arbitrarily long. The pattern depends strongly on the relationship between D (or b 
according to the notation in the above figures) and the wavelength λ, since the equation 
(264) can be also expressed as  

  θλπβ sin)/( D=      (269) 

For D >> λ, there is only one sharp maximum at θ = 0. With decreasing width D, the 
diffraction maximum at θ = 0 broadens and the maxima and minima series starts 
appearing on both sides. 

 

Fraunhofer vs. Fresnel diffraction 

Situations where the Fraunhofer approximation does not hold, that is, where either the 
incident or diffracted light waves are non-planar, correspond to the phenomena of 
Fresnel diffraction. The evolution of Fresnel diffraction pattern on a slit into Fraunhofer 
diffraction with increasing distance of the screen from the slit is shown in the following 
figure.  
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Double-slit diffraction 

Diffraction on two parallel slits of the width b separated by distance a leads to more 
complicated diffraction pattern, as shown in the following figure. 

 

 

 

 

 

 

 

 

 

 

 

Multiple-slit diffraction 

The above double-slit 
diffraction is a special 
case of diffraction of 
light on N parallel slits 
of the width b and 
center-to-center 
separation a.  
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The diffraction pattern is a result of interference of light from individual slits, and of 
interference of light originating from different slits. It can be shown that the dependence 
of intensity of diffracted light on the angle θ can be expressed as  
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where as before 

  θβ sin)2/(kb=       (271) 

and 

  θα sin)2/(ka=       (272) 

The original single-slit diffraction pattern (equation (268)) is thus modified by the term  
(sinNα/sinα)2  arising from the inter-slit interference. The interference pattern is now a 
series of principal maxima occurring at α = 0, π, 2π,…, and of subsidiary maxima. This 
leads to a condition for the principal maxima of 

  λθ ma =sin       (273) 

With increasing N the principal maxima become narrower and sharper, a phenomenon 
reminiscent of multiple-beam interference.  
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Diffraction grating 

The above discussed multiple-slit diffraction is an example of transmission diffraction 
grating. Generally, gratings are periodic arrays of diffractive elements that cause 
changes to light amplitude or phase. Transmission gratings can be also formed from 
completely transparent materials by periodical variations in the refractive index. 
Reflection gratings, on the other hand, are optical surfaces with periodically patterned 
reflecting grooves. Reflection grating forms similar diffraction pattern as the multiple 
slit. The conditions for observing diffraction maxima are again given by the equation 
(273), where the number m represents diffraction order of the grating. The best 
diffraction efficiency, that is concentration of diffracted intensity into a specific order, is 
achieved in the so called blazed gratings.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Monochromator 

The most important use of reflection gratings is for dispersion of light in spectroscopy. 
For a given diffraction order, the diffraction angle is a function of the wavelength of 
light. Thus, for example, incident white light will be dispersed into its constituent colors 
upon diffraction from a grating. Devices that perform the function of color dispersion of 

reflection grating 
blazed reflection grating 
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light are called monochromators.  

  

 

 

              
          
          
          
          
          
          
          
           

 

 

 

 

 

Diffraction and resolution of optical instruments 

The phenomenon of diffraction plays an important role in determining the maximum 
available resolution in imaging optical instruments. Imaging optical instruments usually 
consist of a combination of lenses, the smallest of which will form an effective circular 
aperture of the system. Light originating from a point on the object will then diffract on 
the aperture and form a diffraction pattern in the image plane. The size of the diffraction 
pattern determines the resolution of the system, that is, the smallest distance between 
two point objects at which they can be still imaged separately. 

The treatment of Fraunhofer diffraction on circular aperture of diameter 2a is quite 
complicated and can be found in classical textbooks on optics. Dependence of the 
diffraction intensity on the angle θ is expressed as 
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where J1(kasinθ) is the first order of the Bessel function Jm(u) defined as 
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The diffraction pattern consists of a central circular maximum known as Airy disk. The 
disk is surrounded by a series of Airy rings of decreasing intensity. 

 

 

 

 

 

 

 

 

 

 

 

The distance between the maximum and the first minimum is known as Airy radius and 
can be written using the numerical value of the Bessel function as 

  
a

Rq
2

22.1 λ
=       (276) 

For an imaging system focused on the screen, the distance R can be approximated by 
focal length f. The ratio 2a/f determines the numerical aperture N.A. of the system. Thus 
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There are several ways to define the optical resolution. The so called Rayleigh criterion 
for optical resolution states that two point objects are resolved if their distance is such 
that the maximum of the Airy disk image of one object overlaps with the first minimum 
of the Airy image of the second object. The distance Δl is then given by an equation 
identical to (277) 

  
..

22.1
AN

l λ
=Δ        (278) 

For the case of optical microscopy, the numerical aperture of the system is given by the 
numerical aperture of the objective lens used. For high-magnification oil-immersion 
lenses the achievable N.A. is on the order of 1 – 1.3, and the resolution defined by the 
equation (278) is on the order of one wavelength. This determines the ultimate 
resolution that can be achieved with conventional (far-field) optical microscopy. 
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6. Principle of laser 

The word “laser” is an abbreviation standing for “light amplification by stimulated 
emission of radiation”. We will begin the treatment of the principle of laser by 
explaining the phenomenon of stimulated emission. 

 

Stimulated emission 

In Chapter 1 we have seen that classical Lorentz damped oscillator model of 
light-matter interaction leads to complex refractive index where the index imaginary 
part describes absorption of light. To understand stimulated emission, we have to 
abandon the classical model and have to introduce basics of quantum-mechanical 
treatment of light-matter interaction. 

In quantum-mechanical picture the energy of electrons in atoms and molecules are 
quantized. Electrons occupy discrete energy levels which are determined by atomic or 
molecular orbitals in gases or liquid solutions and by energetic band structure in solids. 
For the treatment of the light-matter interaction it is sufficient to consider the outermost 
valence electrons. We may for simplicity begin by considering two energy levels i, j in 
an atom (molecule). In chemistry and physics, such levels are usually described by 
anharmonic potential curves along a configurational coordinate q. In optics, it is 
sufficient to draw the levels as straight dimensionless lines, as shown in the following 
Figure.    
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In most organic matter, the separation of the outermost electronic energy levels falls into 
the UV – visible spectral region. An atom or molecule with its electron on the lower 
level i (ground state) can absorb a photon of an energy corresponding to the i – j level 
difference. Such process of absorption leaves the electron on the upper level j (excited 
state). 

          
       

 

 

 

An atom or molecule with its electron on the upper level j can release energy by one of 
the following processes: 

1. Spontaneous emission. The electron relaxes to the level i by emitting a photon. The 
process occurs with a characteristic time after absorption, the so called lifetime. Lifetime 
of spontaneous emission of organic molecules is typically on the order of 1 – 100 ns. 

2. Stimulated emission. The relaxation to the state i is stimulated by interaction of the 
molecule with a photon of the same energy. Stimulated emission can be thought of as an 
inverse process to absorption.  

 

 

 

 

 

 

An important property of the stimulated emission is that the incident photon and emitted 
photon have same energy, phase, polarization and propagation direction. In contrast, the 
phase, polarization and propagation direction of a photon emitted by spontaneous 
emission are completely random.  
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Einstein coefficients 

Let us consider a system of N atoms (molecules), of which Ni are in their ground states 
and Nj in excited states. We will examine the transition rate, that is rate of change of the 
number of atoms on levels i, j. The population of the lower level decreases due to 
absorption of light as  

  νuNB
dt

dN
iij

i −=       (279) 

where uν is spectral energy density of the incident light in the units of W/m2 and Bij is a 
proportionality constant. Similarly, the population of the upper level decreases due to 
stimulated emission as 

    νuNB
dt

dN
jji

j −=       (280) 

In contrast, the depopulation of the upper level due to spontaneous emission is 
independent of incident light and can be described as 

  jji
j NA

dt
dN

−=       (281) 

which has a simple solution of  

  )exp()0()( tANtN jijj −=      (282) 

Without the presence of external light source, the population of the excited state decays 
exponentially with a lifetime τ related to the coefficient Aji as 

jiA/1=τ        (283) 

The proportionality constants Bij, Bji and Aji are called Einstein coefficients of absorption, 
stimulated and spontaneous emission.  
In thermal equilibrium, the rates of population change of levels i and j must be equal. 
Thus 

νν uNBNAuNB jjijjiiij +=     (284) 

and this leads to 
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At the same time, the equilibrium ratio Nj/Ni can be determined from Boltzmann 
distribution as 
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where the difference in the energy of the two levels corresponds to the energy of the 
incident photon 

  νhEE ij =−       (287) 

Combining (285) and (286) we can express the spectral energy density as 
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For the limit of infinite temperature the spectral energy density should approach infinity, 
which is according to (288) possible only when  

  jiij BB =       (289) 

We may thus drop the coefficients and rewrite the equation (285) as 
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The two Einstein coefficients are related as 
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Population inversion 

Let us now consider the following situations. 

1. Ni > Nj; this situation corresponds to thermal equilibrium. There is larger probability 
that an incident photon will be absorbed than that it will cause stimulated emission. 
After passing the medium, the incident light is attenuated. 

2. Ni < Nj; this situation is called population inversion. There is larger probability that 
an incident photon will cause stimulated emission than that it will be absorbed. 
Since each incident photon results in two outgoing photons during stimulated 
emission, light is gradually amplified by passage through the medium. This process 
of amplification is one of the principles of laser operation.  

In terms of light intensity, the two above situations can be described using the following 
Figure. Light of initial intensity I(0) incident on a medium has intensity I(d) after 
passing a distance d in the medium.  

 

  

 

 

 

In the case of equilibrium population, the decrease of intensity I(d) due to absorption 
can be written as  

))(exp()0()( dIdI να−=      (292) 

where α(ν) is the absorption coefficient. An analogical equation is used for the case of 
population inversion where the increase of intensity I(d) due to stimulated emission is 
written as  

))(exp()0()( dIdI νγ=      (293) 

Here, the coefficient γ(ν) is called amplification coefficient. The two coefficients are 
related via 

  )()( νανγ −=        (294) 

The ratio of the amplified-to-incident intensity is called gain G. 

I(0) I(d) 

d 
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  G
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The amplification coefficient is related to the population inversion and to the Einstein 
coefficient as 

  ( )
c

hBNN ij
ννγ −=)(      (296) 

 

Methods for realizing the population inversion 

So far, we have considered a simple two-level system. Since the probability of 
spontaneous emission is generally non-zero, for such a system 
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and population inversion cannot in principle be realized. Population inversion requires 
at least three energy levels that can be populated by the atomic (molecular) electron. A 
three-level scheme is shown in the following Figure. 

 

 

 

 

 

 

 

 

 

The coefficient Γ determines the probability of the N1 – N3 transition induced by 
pumping. The sum population of all three levels is N. We may now write the rate 
equations for levels N1, N2, N3 upon pumping in the absence of stimulated emission as 
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The solution of the above equations leads to 
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For a three-level system, population inversion between levels 1 and 2 (N2 > N1) can be 
achieved if 
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which means that, generally, to obtain population inversion with reasonable pumping 
energy, the coefficient A21 must be small and A32 >> A31. 

 

Optical resonator 

Achieving population inversion is not the only condition for laser operation. For 
sustainable operation, the medium has to be placed inside an optical resonator which is 
essentially a Fabry-Perot etalon with one partially and one totally reflecting mirrors. 
After a population inversion is prepared in the medium, initially only spontaneous 
photons are emitted in all directions. Of those, only the photons which propagate along 
the axis of the resonator will be reflected by the resonator mirrors back to the medium. 
Once in the medium, these photons will now trigger an avalanche of stimulated 
emission in the same direction of propagation, that is, along the resonator axis. The 
stimulated photons will be again reflected by the other mirror and by passing the 
medium they will further amplify. The properties of same directionality and polarization 
of stimulated emission thus create a positive feedback in the optical resonator. Part of 
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the amplified light will exit the resonator by the partially reflecting mirror and will 
propagate with high directionality in space as a laser beam. The principle of positive 
feedback in laser resonator is shown schematically in the following Figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spectral properties of laser emission 

The spectrum of laser emission is determined by two factors: 1. Emission spectrum of 
the lasing medium. This is usually a broad structureless band. 2. Transmission modes of 
the Fabry-Perot etalon. These are narrow transmission peaks due to the multi-beam 
interference discussed in the Chapter 4. The widths of the peaks determine the quality of 
the resonator which is expressed in terms of a quality or Q factor. The Q factor is a ratio 
of the frequency of a mode ν0 and its half-width δν.  

  δνν /0=Q        (304) 

The spectrum of laser light is a superposition of the two above factors. For simple 
resonators usually a few resonator modes overlap with the medium emission spectrum 
and the resulting laser is a multi-mode laser. Addition of one or more Fabry-Perot 
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etalons of different mode spacing into the laser cavity leads to the selection of just one 
transmission mode and the corresponding laser is a single-mode laser. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Types of lasers 

Laser can be divided according to several criteria: 

A) Type of lasing medium 
Gas lasers: the lasing medium is a molecular or atomic gas. He-Ne, He-Cd, N2, CO2, 
Ar+, Kr+, excimer, etc. 
Dye lasers: the lasing medium is a solution of organic dyes. Rhodamin, Coumarin, etc. 
Solid-state lasers: the lasing medium is a doped inorganic crystal. Nd-YAG, ruby, 
Ti-Sapphire, etc. 
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Semiconductor laser diodes: the lasing medium is a semiconductor PN junction. 
AlGaAs, InGaAs, InGaAsP, etc. 
 
B) Pumping metods 
Lasers can be pumped into the state of population inversion by electric discharge (gas 
lasers), electrical current (laser diodes) or optically by flash lamps, semiconductor 
diodes or other lasers (dye lasers, solid-state lasers) 
 
C) Modes of operation 
Modes of operation can be either continuous wave (cw) or pulsed operation. Pulsed 
lasers range between ns and fs lasers.  
 
 
Characteristics of laser light 
The stimulated emission and resonator modes determine the following characteristics of 
laser light: large coherence length, low divergence of propagation, narrow spectral 
bandwidth, Gaussian intensity profile. 
 
 

Gaussian intensity profile of propagating laser beam
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Terminology  

A 
absorption   吸収 
Ampere’s law   アンペール法則 
amplification coefficient  増幅係数 
amplitude reflectance  振幅反射率 
amplitude transmittance  振幅透過率 
analyzer    アナライザー 
angular frequency  角周波数 
anisotropy   異方性 
anti-reflection coating  反射防止膜 
atomic orbital   原子軌道 
B 
beam splitter   ビームスプリッタ 
biaxial    二軸（の） 
birefringence   複屈折 
Boltzmann distribution  ボルツマン分布 
Brewster’s angle   ブルースター角 
C 
calcite    方解石 
charge     電荷 
circular polarization  円偏光 
coherence   コヒーレンス 
coherence length   コヒーレンスの長さ 
coherence time   コヒーレンスの時間 
compensator   補償板 
complex representation   複素表現 
concave lens   凹レンズ 
constructive interference  増加的干渉 
convection current  対流 
convex lens   凸レンズ 
D 
damping   減衰 
destructive interference  減殺的干渉 
dichroic    ダイクロイック、二色（の） 
dielectric film   誘電体膜 



 108 

dielectric layer   誘電体層 
diffraction   回折 
diffraction grating  回折格子 
dispersion   分散 
displacement current  変位電流 
dye laser   色素レーザ 
E 
Einstein coefficients  アインシュタインの係数 
electric dipole    電気双極子 
electric discharge  放電 
electric field   電場 
electric field intensity  電場の強さ 
electromagnetic spectrum  電磁波のスペクトル 
electromagnetic wave   電磁波 
electro-optical effect  電気光学効果 
ellipse    楕円 
elliptical polarization  楕円偏光 
empirical   実験的 
equilibrium population  平衡分布 
equation of motion  運動方程式 
evanescent wave   エバネッセント波 
excited state   励起状態 
extraordinary (refractive index) 異常（屈折率） 
F 
Fabry-Perot etalon  ファブリ‐ペロー・エタロン 
Faraday effect   ファラデー効果 
Faraday’s law   ファラデーの法則 
feedback   帰還、フィードバック 
finesse coefficient  フィネス係数 
force    力 
Fraunhofer approximation フラウンホーファ近似 
frequency   周波数 
Fresnel diffraction  フレネル 
Fresnel equations  フレネルの方程式 
G 
gain    ゲイン 
Gauss’s law   ガウスの法則 
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graded index lens  屈折率分布型レンズ 
ground state   基底状態 
H 
half-wave plate   半波長板、二分の一波長板 
harmonic function  調和関数 
I 
incident    入射（の）   
interference   干渉 
interference filter   干渉フィルター 
interference fringes  干渉縞   
interference fringes of equal inclination 等傾角干渉縞 
interferometer   干渉計 
K 
Kerr effect   カー効果 
L 
laser    レーザ 
laser resonator   レーザ共振器 
lens    レンズ 
lifetime    寿命 
light     光 
light amplification  光の増幅 
light intensity   強度 
linear polarization  直線偏光 
M 
Mach-Zehnder interferometer マッハ‐ツェンダー干渉計 
magnetic field   磁場 
magnetic flux density   磁束密度 
Michelson interferometer  マイケルソン干渉計 
microscope   顕微鏡 
mirror    ミラー、鏡 
mode    モード 
monochromator   分光器 
multimode   多モード 
multi-mode laser   多モードレーザ 
multiple-beam interference 多光波干渉 
N 
natural frequency  自然振動数 
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near field   近接場 
Nicol prism   ニコル プリズム 
non-linear optics   非線形光学 
numerical aperture  開口数 
O 
oscillating dipole   振動双極子 
oscillator   振動子 
optical activity   光学活性 
optical axis   光軸 
optical communications  光通信 
optical coupling   光学的結合 
optical fiber   光ファイバー 
optical path   光路 
optical resolution   光学分解能 
optical waveguide  光導波路 
optics    光学 
ordinary (refractive index) 常（屈折率） 
P 
parabolic   放物面の 
parallel    平行 
period    周期 
permeability   透磁率 
permittivity   誘電率 
perpendicular   垂直 
phase    位相 
plane of incidence  入射面 
plane wave   平面波 
Pockels effect   ポッケルス効果 
polarizability   分極率 
polarization   分極 
polarization   偏光 
polarizer   偏光子 
population inversion  反転分布 
Poyinting vector   ポインテイングベクトル 
pressure of light   光の圧力 
propagation number  波数 
pumping   ポンピング 
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Q 
Q-factor    Ｑ因子 
quartz    石英 
quarter-wave plate  四分の一波長板 
R 
radial    半径の 
ray    光線 
ray tracing   光線追跡 
Rayleigh scattering  レイリー散乱 
reflection   反射 
reflectance   反射率 
refraction   屈折 
refractive index   屈折率 
resolution   分解能 
resonance   共鳴 
resonator   共振器 
retarder    遅相子 
rotatory power    偏光強度 
S 
scattering   散乱 
semiconductor laser  半導体レーザ 
single-mode   単一モード 
single-mode laser  単一モードレーザ 
slit    スリット 
Snell’s law   スネルの法則 
solid-state laser   固体レーザ 
spectroscopy   分光 
spherical   球面の 
spontaneous emission  自然放出 
spring constant   ばね定数 
stimulated emission  誘導放出 
T 
tangential   接線（の） 
thermal equilibrium  熱平衡 
total internal reflection  全反射 
transmittance   透過率 
transverse wave   横波 
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U 
uniaxial    単軸（の） 
W 
wave equation   波動方程式 
wavelength   波長 
wave plate   波長板 
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