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1. Character of light

Light can be viewed in the form of electromagnetic waves or in the form of particles.
We will begin with the characterization of light as electromagnetic waves. To
understand the electromagnetic origin of light it is at first necessary to review the basic
terms and laws of electromagnetic theory. Electromagnetic theory operates with electric
and magnetic fields. Electric field E can be defined as such property of space which
exerts a force Fe on a charge g placed in it. The force is the well-known Coulomb force.

E

qO——F: Fe=qE (1)

Similarly, magnetic field B is such property of space where a moving charge feels a
force F|, called Lorentz force.

B (direction towards page)
O O O O O

F F =qvxB (2)

direction of motion v
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The fields are characterized by electric field intensity E and magnetic flux density B.
Both fields have their origins in electric charges. Electric field is created around a static
charge, magnetic field originates from a moving charge.




Basic laws of the electromagnetic theory are concerned with non-stationary
electric and magnetic fields, that is fields that change with time. The laws are based on
simple phenomenological observations which are generalized and expressed in
mathematic terms.

Faraday’s law

The law is based on the observation that movement of a metallic wire loop through
magnetic field B generates current in the loop and voltage at the loop terminals. The
voltage is called emf (electromotive force). Emf is proportional to the change of loop
area A and/or to the change of the field B.

_dB-A) @)
dt

emf

emf

The above observation can be generalized in the following way by imaging an abstract
loop C which encloses an area A through which passes magnetic field B. The loop need
no longer be a real conducting wire. It is an imaginary loop where the emf is related to
electric field E via

emf = §E -dl 4)
C

The right-hand side of Eg. (3) is now an integral of B over the area A, and the equation
can be re-written as

d OB
iE-dl=—a&[B-dS=—J‘AJE-dS (5)



The generalized Eq. (5) now expresses the fact that change of magnetic field creates an
electric field.

Ampere’s law

The observation upon which Ampere’s law is based can be summarized by stating that
magnetic field is generated in the vicinity of current carrying wire, and the two are
related via vacuum permeability s as

22B =1 (6)

The law can be generalized in a similar way as Faraday’s law by imaging an abstract
loop C which encloses an area A, through which passes a current J.
The Eg. (6) can be again written in general

form using integration of the current over
the area A

§B-di =y [[J-ds (7)

C A

The nature of the current can be either
convection current Jc (motion of charges
through real conductor) or displacement
current Jp.

The displacement current is related to electric field (such as the one between condenser

plates) as

To=¢7r 9)



Assuming no convection current in vacuum and using the Eqg. (9) the Ampere’s law can
be written as

FB-dl = oz [[ 2 s (10)

C A ot
with & being vacuum permittivity. The equation states that changing electric field is
accompanied by magnetic field.

Gauss’s laws — electric and magnetic

These laws describe the relationship between field flux and field source. Imagine a
section of a water pipe with varying diameter and cross-sections A; and A, at both ends.
Without a source inside the closed
surface, |Avy|=|Av,|  and flux
through the enclosed surface is
zero.

A
Va2

Ay

In more general terms, total flux of electric field through an enclosed surface A is zero
unless there are charges present inside the surface. Mathematically, this statement can
be formulated as

ﬁE-ds =0 (11)
A

In the presence of source charges the equation (11)
becomes

ffE-ds == []f v (12)
A €0y

where p represents the charge spatial density. For

- magnetic field there are no magnetic charges
(monopoles) and the equivalent equation is written
as

ﬁB-ds =0 (13)
A



Maxwell’s equations

The set of equations representing the generalized Faraday’s and Ampere’s laws, together
with the electric and magnetic Gauss’s laws are known as Maxwell’s equations in
integral form.

OB
£E~dl = _I,!E'ds (14)
§B -dl = yog()”%—ls.ds (15) Maxwell’s equations
C A
EE -dS :g—loj‘\ﬂpdv (16) in integral form
ffB-ds=0 (17)
A

For further treatment it is helpful to get rid of the integrals and express the equations
(14)-(17) in differential form. To be able to do that we have to invoke the so called
Stokes theorem which relates the path and surface integrals of a variable F

fF-di=[[(VxF)-ds (18)
c A
and Gauss’s divergence theorem which relates the surface and volume integrals
ﬁF-dszmv-de (19)
A \Y

Applying (18) and (19) to (14)-(17) one easily obtains the Maxwell’s equations in
differential form:

vxE=_2B (20) v.E=£ 22)
€
VxB:yOEO%—]tE (21) V-B=0 (23)

In vacuum (in the absence of charges) the equation (22) becomes

V-E=0 (24)



Wave equation

The equations (20-21) and (23-24) describe electric and magnetic fields in vacuum with
no free charges present. The equations can be further manipulated and combined using
the following vector operator identity

Vx(VxE)=V(V-E)-V?E (25)
Using the Maxwell’s Eq. (24), the relation (25) simplifies to
Vx(VxE)=-V°E (26)

Applying the operation V x from the left on Eq. (20) and substituting the Eq. (21) into
the right-hand side we obtain

O°E
V’E = Ho&o ra (27)

The equation (27) relates space and time variations of electric field and as such
resembles general equations used to describe wave phenomena. To describe a wave

motion of velocity v, the 1 and & parameters would have to satisfy

v=1/\[ e, (28)

Using the known values of vacuum permeability and permittivity in the Eq. (28) one
obtains for v the value of ~ 3x10® m/s, which corresponds to the known value of the
vacuum speed of light. With the usual notation of ¢ for the light speed in vacuum we can
re-write the Eq. (27) as

v%—iﬁ@ (29)

c? at?

The Eg. (29) now represents the wave equation for electric field propagating at the
speed of light. Similar wave equation can be derived for the magnetic field as well.

Solutions of the wave equation

Let us consider 1-dimensional wave equation



o°u 1 o

-2 - 30
ox? v?ot? (30)
The Eqg. (30) has a general solution in the form of
u(x,t) = f (X —vt) + g(x+vt) (31)

2

that is, it consists of waves propagating in the x and —x directions with velocity v.

Let us now go back to the 3-dimensional problem and consider for simplicity a
plane electric field wave propagating in the x direction. The plane character of the wave
implies that for a given coordinate x and time t the electric field is constant in the y and
z directions, E = E(x,t). Applying Maxwell’s equation (24) to this type of wave we find

0E, OE, oE

V.E=—X4+_Y420 (32)
oXx oy oz
%, =0 by the definition of the plane wave, OBy =0 and Ey is either

: OE
Since —Y=
oy 0z OX

constant or zero. However, the Ex = const. solution does not correspond to a traveling
wave and thus the component in the propagation direction must be zero, E, =0. The

resulting plane wave is a transversal wave. To further simplify the problem, we may put
E, =0 and write

E(xt) = §E, (x,t) (33)

with y a unit vector in the y direction. Applying Maxwell’s equation (20) in Eq. (33)
we obtain a single non-zero component

oE

i A _%B, (34)

OX ot
Therefore, the time-dependent magnetic field only has a component in the z direction,
and the corresponding plane wave is also a transversal wave. It can be further shown
that the electric and magnetic fields are perpendicular to each other and to the direction
of propagation.

10



Solutions in the form of harmonic functions

Harmonic functions are the simplest solutions of the wave equation (30). From now on,
we can consider only one scalar component of the electric and magnetic fields and one
propagation direction. The direction can be specified by a unit vector if necessary.
Electric field propagating in the x direction can be written as

E = E, cosk(x —vt) (35)

Eo is amplitude of the wave, and k is a factor ensuring that the argument of the cosine
function is dimensionless. Distance over which the wave repeats itself is called
wavelength A.

wavelength A

><V

The definition of wavelength leads to
E = Eycosk(x —vt) = Ecosk((x + 4)—vt) = Ejcos(k(x —vt)+27)  (36)

from where we obtain a definition of the propagation number k
k=— 37
7 @37)

Time necessary for one wavelength to pass is called period zand number of waves per

11



unit time is frequency v. Finally, angular frequency w is related to frequency via 2.
r=Alv v=1lr w=2nv=2rlt (38)
In the field of optics, the Eq. (33) is often expressed using the angular frequency
E = E, cos(kx — mt) (39)

Another often used representation of the electric field is the complex representation
based on the Euler’s formula e'? =cosé +isiné:

E = Ege (%) (40)

where it is implicitly assumed that the electric field corresponds to the real part of (40).

Sources of electromagnetic waves

Moving charge is the source of magnetic field. Uniformly moving charge (at constant
speed along a straight line) is the source of static magnetic field which does not give

12



rise to electric field. To produce time-dependent magnetic field, the charge in motion
must be accelerating — either by changing speed or by moving along a curved line. The
resulting magnetic field produces time-dependent electric field which in turn produces
magnetic field etc., resulting in an electromagnetic wave.

The simplest and most usual source of electromagnetic radiation is an oscillating
electric dipole. For two charges q separated by distance d the oscillating dipole p can be
expressed as

p = p, coswt = qd cos wt (41)

The radiated electric field depends on the spatial
angle @and distance r as

Pok?sin @ cos(kr — wt)
r

E= (42)

4rg,

Electromagnetic spectrum

The frequency with which the electric dipole oscillates determines the nature of the
electromagnetic radiation and the various phenomena associated with it. Historically,
radiation of different wavelengths has been discovered and named independently. The
overview of the spectrum regions and corresponding energies, frequencies and
wavelengths is given below.

THE ELECTROMAGNETIC SPECTRUM
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Energy of light

We have seen that light is a transverse electromagnetic wave with electric and magnetic
fields perpendicular to each other.

Using the harmonic function E, = Eqcos(a(x/c—t)) in the Eq. (34) we obtain

14



oE Eow [ . 1 E
B, :—J axy dt = gwj'sm(a)(x/c—t))dt:EE0 cos(a)(x/c—t)):Ty (43)

This equation directly relates the electric and magnetic field components of an
electromagnetic wave. Classical electromagnetic theory gives energy density (energy
contained in unit volume) of the electric field as

Ug :‘c"—zoE2 (44)

and that of the magnetic field as

U = B? (45)

Ho

Using the equations (28) and (43) it can be easily shown that ug = ug, i.e. the energy is
evenly distributed between the electric and magnetic components. The total energy
density is then

U=Ug +Ug = &E” (46)

Let us define S as transport of energy per unit time T across a unit area A.

energy  en.density xvolume u(cT)A uc

S =
time x area time x area TA

(47)

and using the Eq. (44)-(46) we can write

15



S =c?,EB (48)

The flow of energy should be in the direction of propagation of the electromagnetic
wave, that is perpendicular to both E and B. This can be expressed by writing the Eq.
(48) using vector notation

S =c%s)(ExB) (49)

The vector S expressing the flow of electromagnetic energy is called Poyinting vector.

Light intensity

Light intensity I is defined as the Poyinting vector averaged in time over one period. It
is expressed in the units of [W/m?]. Using the oscillating electric and magnetic fields in
the form of E = E,cos(kx — wt) and B = By cos(kx — wt) we can write

| = ‘(SM =C’&,EqBy %.[Orcos2 (kx — eot)dt = C% ES (50)

Light intensity decreases with a distance from point source as

I
1(r) =r—2 (51)
This dependence which is a direct consequence of the Eq. (42) is known as inverse

square law.

Pressure of light

Electromagnetic field of light interacts with charges in objects. Such charges start
moving due to the presence of electric field. Once in motion, the charges feel force due
the associated magnetic field. The direction of the force is in the direction of
propagation of light. This light-induced force is the origin of the pressure of light.
Mathematically, it can be expressed as

p=. (52)
C
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Light as particles

Light is absorbed and emitted by matter in discrete steps of energy. This experimental
observation led to the idea that electromagnetic energy is quantized. Quantum particle
of light is called a photon. One photon has an associated energy expressed as

E=hv=hw (53)
where the constant h is called Planck’s constant. Its values are
h=6.6262x10"*Js and 7#=1.0546x10"*Js

Light of a given frequency can have energy only in multiples of hyv. Other basic
characteristics of photon are zero charge, zero still mass, and spin equal to one (boson
character). The energy of photon is related to a momentum p as

pEhv_h_ 54
C C A
or in vector notation
p =7k (55)

17



2. Propagation of light
Refractive index

We have derived in the preceding Chapter the wave equation for propagation of light in
vacuum (Eq. (27)). The equation implies that in vacuum light propagates with the speed

1

\ €0t

In a material medium, the speed of light is determined by material constants &, which is

Cc=

(56)

permittivity or dielectric constant (function), and x4, which is permeability. The speed of
light in material now changes to

ve_1_ (57)

Jeu

The ratio of ¢ and v is known as the index of refraction n (or refractive index)

C
n=-= |- - e (58)

Vo N ot

In (58), & and g are relative permittivity and relative permeability, respectively. The
value of g is generally very close to 1, and the Eqg. (58) can be written in an
approximate form as

n’=¢ (59)

The equation (59) is known as Maxwell’s relation.

Refractive index dispersion

The term dispersion relates to the dependence of refractive index on the wavelength (or
frequency) of light. It has been first described by Newton in his experiment where white
light incident upon a prism is dispersed into the constituent colors.

red
green

white

blue

18



To describe the dispersion phenomenon, an empirical relation was proposed by A.
Cauchy in 1830.

n(/i)—1=A(l+%+%+...j;A(1+/%j (60)

The equation is known as Cauchy’s formula and
despite its simplicity it is being used in many
problems concerning dispersion in transparent
regions even today.

Cauchy's formula

Refractive index

Wawelength

Microscopic model of dispersion

First microscopic model to describe the phenomenon of refractive index dispersion
based on classical electromagnetic theory was developed by H.A. Lorentz, and is
accordingly being called Lorentz oscillator model. In the model, it is assumed that in
material medium, electrons in atoms are attached to the atomic nuclei via a classical
spring, and that interaction with electromagnetic wave causes an oscillating motion of
the electrons. 2

y

electron e

atomic nucleus

light
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The equation of motion of the electron based on Newton’s second law is
ma=F =F; +F; (61)
where the driving force F consists of Coulomb force F¢ due to the electric field and

restoring force Fr due to the spring. Since all the vectors in the equation (61) are
parallel with the x axis we may drop the vector notation and write

d’x

mF eE —kgx (62)

where m is the electron mass and ks the spring constant. When pushed out of
equilibrium the electron oscillates with natural frequency

o = ks T (63

The equation of motion is thus a differential equation

2
m?;(+ma)§x:eE (64)

or, with the oscillating form of electric field,

2
mF;( + magx = eE, cos(kz — wt) (65)

Use of a trial solution in the form
X = X, cos(kz — wt) (66)

leads to the solution

X= _e/m E,cos(kz — awt) = _e/m E (67)

(05 o)
Change of the equilibrium position of the electron results in an electric dipole moment p

2
p:ex:&E:aE (68)

(0 ~o?)

The term relating the electric field and resulting dipole moment is the frequency
dependent atomic electron polarizability «

20



a(w) = (Ze/—mz) (69)

Wy — @

The linear response of material to the incident light perturbation defines the realm of
linear optics. In more general terms

p=aE+ fS(E-E)+.. (70)

where the higher-order terms are a subject of the field of non-linear optics.
For an ensemble of N atoms, the individual atomic dipoles add to create a
macroscopic polarization P

P =Np=NoE (71)

On the other hand, classical electromagnetic theory gives the macroscopic polarization
in the form

P= (5 - & )E (72)

or, after a slight modification

& :1+i (73)
&E

Now, using the equations (71), (73) and the Maxwell’s relation (59) we can write an
expression for the refractive index

n? =14+ N (74)
&0

or in the explicit form of frequency dependence

— (75)

%
n(a))=£1+N—e2 21 jZ

mey @y

The equation (75) is the sought after dispersion relation of the refractive index.

- Experimental data show several
; natural frequencies ani in the
infrared-to-X-ray region of the

electromagnetic spectrum,

b oo @y, oy corresponding to different atomic

Infrared Visible Ultraviolet X-ray



or molecular processes. For example, the frequency wn corresponds to vibrations of
atoms in molecules while the frequency v, reflects the atomic or molecular electronic
transitions.

Damped oscillator model

The experimental data are well described by the equation (75) in regions far from
the resonance frequencies ani. In the vicinity of i, the equation (75) predicts a
singularity which actually does not occur. Thus, more complex treatment near resonance
IS necessary to describe the observed phenomena. The more complex treatment involves
introduction of damping into the oscillator motion by adding a friction force Fg on the
right-hand side of the Eq. (61)

ma=F; +Fg +Fc (76)

The friction force is proportional to the velocity of the electron and acts along the x axis,
thus

2 .
%+ 2ﬂ%+ X :%Eoe"(“"‘kz) (77)

where we have used the complex notation for the electric field. We use a trial solution

W = Xoe—i(mt—kz) (78)
to obtain
e/m “i(wt—kz) e/m
X= E.e = E (79)
(a)g —o? —Ziﬁa)) (a)g - o? —Ziﬂa))

The polarizability is now a complex observable

2
e“/m
wy —o° = 2ifw
leading to a complex refractive index
2 2 2, o
() =1+ Ne® ay — o +2ifw (81)

Mméeg (a)g —a)z)z +45°0°

The refractive index is often written as a sum of the real and imaginary parts

22



() = Ng (@) +in, (@) (82)

The real part of the refractive index corresponds to what is understood under the term
refractive index in the field of optics, and is responsible for such optical phenomena as
refraction and reflection. The meaning of the imaginary part becomes evident by writing
the oscillating electric field explicitly as a function of distance z using the refractive
index instead of the propagation number k

E(Z) — Eoeia)(nz/c—t) — Eoe—n,a)z/ceiw(nRz/c—t) (83)

The amplitude of the electric field now decreases exponentially with distance z. Since
the intensity of light is given by the square of the amplitude we may write

|(Z) — Ioe—Zn,a}z/c — Ioe—a(w)z (84)

The equation (84) has the usual form of Lambert’s law where the absorption coefficient
o w) is defined as

a(w)=2nwlc (85)
The imaginary part is due to absorption of light in matter and is studied in detail in the
field of optical properties of materials. The real and imaginary parts together are often
called optical constants.

Cauchy's formula validity region

ny(®)

NRr(®)

Frequency @

The origin of the friction force introduced arbitrarily in the classical model can be
understood only in the frame of quantum mechanics. It is due to the loss of
electromagnetic energy as a result of electronic transitions between quantum levels of
atoms or molecules.

23



So far, we have assumed that the electric field acting upon the electron is equal to
the electric field of incoming light wave. This approximation is true for isolated atoms
or molecules but breaks down for interaction of light with dense media. In densely
packed matter the local field that the atom feels is influenced by contributions from
neighboring atoms. The dispersion relation in dense media where local electric field is
different from the external field of the electromagnetic wave is described by
Clausius-Mossotti formula

n?(w) -1 _ Na(w)

n(@)+2 3¢ (86)

instead of the simple relationship of the equation (74).

Interaction of light with matter

In classical optics, the propagation of light is associated with macroscopic interaction of
light with transparent matter. The phenomena involved in the propagation are classified
as scattering, refraction and reflection.

Light scattering

Scattering of light on particles with sizes much smaller than the wavelength of light, i.e.,
a << /A, is called Rayleigh scattering. An example is scattering of sunlight on molecules
of air which causes the characteristic blue color of sky. Using the classical oscillator
picture introduced in the previous section, an electron in the atom is driven into
oscillating motion with the frequency w of the incident light. The resulting oscillating
electric dipole in turn emits light of the same frequency into all direction. The spatial
distribution of the scattered light from one atom is given by the equation (42).

N N

/N N
LSl
scattering / \l/\

incident light
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In typical Rayleigh scattering experiments from bulk samples, light of incident intensity
lo irradiates a sample, and scattered light of intensity I is detected at an angle & and
distance r with a detector.

Based on the theory of electric dipole radiation it is possible to express the intensity | as
a function of wavelength, the angle #and distance r.

87*Na?

4.2

e (1+ cos®8) (87)

=1,
where « is again polarizability. The strong wavelength dependence is responsible for the
above mentioned blue color of sky.

Scattering of light on particles with sizes comparable or larger than the
wavelength of light is described by Mie scattering theory. The spatial distribution of
scattered light intensity departs from the symmetrical shape given by the equation (87).
With increasing particle size more light is being scattered in the forward direction than
in the opposite direction. This phenomenon is known as the Mie effect. For large
particles, practically all light is scattered in the forward direction at = 0.

a = S00A
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With increasing particle size the dependence of scattered intensity on the wavelength
weakens and is negligible for large-size particles (such as water droplets in clouds). Still,
the spatial distribution of the scattered intensity is a function of a, « A, and
measurements of scattered intensity as a function of the observation angle & are a basis
of many methods for material characterization. Light scattering methods are used to
measure, for example, colloidal particle size, molecular weight of polymers in solutions,
etc.

Refraction and reflection

The simplest treatment of the phenomena of refraction and reflection uses the concept
of ray. Ray is a geometrical line connecting infinitely small parts of a plane wave as it
propagates through space. Direction of the ray corresponds to the direction of the flow
of light energy.

Light ray incident on the interface between media of different refractive indices n;,
n; undergoes reflection and refraction. The incident ray and a normal to the interface
define the plane of incidence.

incident light . reflected light

Nt

refracted light

The directions of the reflected and refracted rays are governed by two simple laws. The
law of reflection states that angles of the incident and reflected rays are same, 6 = 6,
and that the reflected rays lie in the plane of incidence. The law of refraction, also
known as Snell’s law, can be formulated as

n;sing, =n,siné6, (88)

and the refracted rays also lie in the plane of incidence.

26



The laws of reflection and refraction are a consequence of an important law in
optics — the Fermat’s principle. The principle, alternatively called the principle of least
time, states that the actual path taken by light between two points in space is the one
which takes the least time for the light to travel.

Electromagnetic approach to reflection and refraction

The law of reflection and refraction simply determine the direction of light interacting
with the interface. To get information about the amount of light going in each direction
we have to consider the electromagnetic wave nature of light. We assume for simplicity
the electric field in the form of plane waves. We than have to treat separately two cases,
one where the direction of electric field oscillation is perpendicular to the plane of
incidence, and the other where the oscillation direction lies in the plane of incidence.

1. E perpendicular to the plane of incidence.

Int_erface
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The oscillating electric fields in the incident, reflected and refracted waves can be
expressed as

E, =zE,, cos(k, - r — wt) (89)
E, = zEy cos(k, - r — wt)

The laws of electromagnetic theory imply a set of boundary conditions for the fields at
the interface. Specifically, components of electric field E and magnetic field H that are
tangential to the interface must be continuous across it. Here, the magnetic field
intensity H is related to B via B = xH . For the present case of E perpendicular to the

plane of incidence, all components of the electric field are tangential to the interface,
and the continuity condition means that the total tangential components above and
below the interface are equal.

E +E, =E, (90)
which by elimination of the vector and oscillating components at y = 0 leads to

Eqi + Eor = Eqy (91)
The condition of H gives

—H,;cosé, + H, cosd, =—H, cosé, (92)

where the signs reflect different orientations of the tangential components. Using
B = uH, recalling that E =vB, making use of & = & and eliminating the oscillating
components at the origin, the equation (87) can be re-written as

L (Egi — Eor)c0s8, = ——Ey cost, (93)

HiVi HiVy

or using the refractive indices, and the fact that the permeabilities 4 and g4 have very
similar values

n; (EOi - EOr )COS@i =N EOt COSHt (94)

We will now define amplitude reflectance as
- (E—Oj (95)
EOi 1
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and amplitude transmittance as

t, = Eot (96)
EOi 1
The equations (91) and (94) than give the Fresnel equations:
[ = n; COSé, — N, cosé, (97)
n; cos &, +n, cos o,
{, = 2n; cos 6, (98)

n, cosé; + n, cosé,

2. E parallel with the plane of incidence.

Interface i x
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Fresnel equations for the case of electric field component lying in the incident plane can
be derived analogically based on the relevant boundary conditions:

_ N, cos@; —n; cosb,
N, COS @, +n, cos 6,

n (99)

B 2n, cos 6,
N, Cos 6, + n; cos 6,

t (100)

The Fresnel equations (97) — (100) describe changes in the amplitudes of electric field
upon reflection and refraction on an interface. Apart from the amplitude change, there is
also a change in the phase of the electromagnetic wave upon reflection, as shown

without justification in the following figures:

(a) T (c)
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The quantity which can be experimentally measured is light intensity I, related to the
electric field by the equation (50). Light intensity is energy normalized per unit area.
Upon reflection and refraction, the total energy must be conserved. It is therefore useful
to work with light power P defined as intensity x area. According to the situation
described in the figure, power in the incident, reflected and refracted (transmitted)
beams is

P = l;Acos 4, P = 1;Acos6,

P. =1,Acos6, (101)
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We define the quantities of reflectance R A cos 0 / Acos B,

and transmittance T as

P 1cosé, i

reP_ b (102) Ry |
ST A
| i
P l,cosé i ' N
T=_t-_t—=t 103 o -
(193) i e

The reflectance and transmittance are
related to the respective amplitude
quantities as

A con f,

Ryy=rf) (104)
n, cosé,

L t |2 105

L (ni coseijl‘” (105)

The parallel and perpendicular components of R and T depend differently on the
incident angle &. For the parallel components there is an angle &, called Brewster’s
angle, at which the reflectance R is zero. This phenomenon is often used in polarization

and laser optics.
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The equations (104) and (105) take especially simple form for the case of normal
incidence (& = 0) from air (n; = 1):

2
n -1

For example, for glass of n = 1.5 the normal incidence reflectance is about 4%.

Total internal reflection

Total internal reflection (TIR) refers to the situation when the angle 4 of the refracted
(transmitted) light reaches /2. Snell’s law can be used to determine the incident angle
& at which TIR occurs, that is at which sin & = 1. This angle is called critical angle and
denoted &

incident light . reflected light

refracted light
. N
sing, =— (107)

Application of the Fresnel equation (105) for transmittance for the case of 4 = /2 gives

T o[ MCOSG |2 _, (108)
n, cos &,
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that is, no energy is transmitted into the n; space. An interesting situation occurs when
we look at the Fresnel equations for amplitude transmittance. Using & = #/2 we obtain

{ = 2n; cos 6, :ﬂ (109)
n,cosd +n,cosd, n
t, 2n, cos 6, (110)

n; CoSé; + n, Cos 6,

There is a seeming contradiction in equations (108) and (109)-(110), that is, while the
transmitted energy is zero, the transmitted amplitude at the interface is non-zero. To
examine this situation further we will look at the transmitted electric field E; in the form

i(KyeX+Ky y—ot)

E, = E,e (111)

K

V

In the equation and the figure, k; is the propagation vector of the transmitted light and
ky: and ky; are its components along the x and y axes. For ky and ky; we can write

Ky =[ki|siné, =k;sin6, (112)

ky: =[ki|cos6, =k cos6, (113)

Using goniometric identities and Snell’s law we can express

2
Ky =k, C0S6, = k;y/1—sin® 6, :kt,/l—(%sineiJ (114)
t
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2
For TIR (ﬁsinéﬁJ >1 and
N

2
Ky, =ik, (%sin@ij _1=ip (115)

t
For the x-component we obtain using Snell’s law

Ky =k, %sin 0 (116)

t

The electric field E; can be now expressed as
if kM sin G x—at
E, = EOteﬂye[ n ) (117)

The first exponential term in the equation (117) describes an electric field which decays
exponentially in the y-direction. Light that penetrates to the n; space near the interface is
called near field. The penetration distance is on the order of 1 wavelength. The
associated electromagnetic wave is called evanescent wave.

E, N

N;

The second exponential term is an electromagnetic wave propagating along the
x-direction with the wavelength

_ A
= sin6; (118)

Et
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Frustrated total reflection

From the above discussion it follows that energy may start propagating in the
y-direction if another material medium is placed at a distance from the interface which
is less or comparable to the wavelength of light in the n; medium. The phenomenon is
called frustrated total reflection.

Ni2

Nt1

N;

Except TIR, other sources of evanescent waves include pinholes in metallic sheets with
diameters d << A, or metal coated pulled optical fibers, which are used as evanescent
wave sources in near-field scanning optical microscopy (NSOM).

Reflection from metals

Reflection from metals is characterized by very high reflectance values. To understand
the origin of the high reflectance we have to consider the refractive index in its complex

form.

«— Frequency, v (Hz)

Reflectance R

500 700 900 1100
Wavelength, A (nm) —

N(A) = ng(4) +in, (4) (119)

So far, we have treated reflection from transparent materials for which n; (1) =0. This
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is not the case for metals. The Fresnel equation for reflectivity at normal incidence with
complex refractive index has the form

Rz(n—lj(n*—l):(nR ~1f +n? (120)

n+1An*+1) (ng +1) +n?

For metals, the imaginary refractive index is comparable or larger than the real
refractive index, n, >ng, causing the reflectance to approach unity. Characteristic
color of metals is determined by the wavelength dependence of n;.

Applications of reflection and refraction I. Geometrical optics.

The field of geometrical optics is concerned with basic optical elements such as lenses,
mirrors and prisms, and their combinations, and treats the associated problems of light
propagation and image formation using the concept of light rays.

Lens. Lens is a part of space of refractive index n; defined by two surfaces which in the
simplest case of spherical lens are spheres of radii R; and Ro.

CONVEX CONCAVE

R, >0 R, <0
R, <0 s Ry>0
Bi-convex Bi~oncave
R, =co R] =0
R, <0 R,>0
Planar convex | Planar concave
R, >0 R, >0
R;>0 R,>0
L Meniscus Meniscus
convex concave

The magnitudes and signs of R; and R, determine the type of the lens (convex or
concave). Each lens is characterized by its focal length f which defines object and image
focal points F, and F;. Rays passing focal points propagate in parallel with the optical
axis on the other side of the lens.
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The passage of rays through a thin lens can be described by Thin lens equation, often
referred to as Lens maker’s formula:

i+i:(nl—1 I (121)
So S R R, f

where s, and s; are distances of cross-sections of rays with the optical axis on the object
and image sides, respectively. The focal length of the lens is also related to the
magnification when an image is formed in the image space.

M=o S A_ T (122)

Mirrors

A spherical mirror is characterized by its curvature radius R. The ray passage is
described by Mirror formula:

1 1 2 (123)
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Ray tracing

Rays close to the optical axis
compared to R define the so
called paraxial region. In the
paraxial region incident rays
parallel with the optical axis will
pass the focal point after
reflection. The restriction of the
paraxial region is lifted for
parabolic mirrors, where all
incident parallel rays are focused
into the focal point (and vice
versa). Paraboloids are used in
many applications, such as
flashlights and car headlights.

An increasing number of optical elements in the optical system can greatly complicate
treatment of the ray propagation through the system. Instead of solving equations for
each element separately, it is possible to simplify the problem by using ray tracing
method. The optical system is fully characterized by the angles &, &, and distances from

optical axis y;, Y, of the incoming and outgoing rays.

optical system

The quantities (yi, &), (Yo, &) now form vectors. Each optical element can be described
by a 2 x 2 transfer matrix M;. The optical system as a whole is characterized by a matrix
M which is a product of the transfer matrices of the N elements

M =My -My..My-M;

and the solution of the problem is given by
HEH
0o 6
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Examples of the transfer matrices:

Propagation in vacuum over distance d

Propagation in medium n over distance d

Refraction between media n; and n»

Propagation through a thin lens f

Reflection from a spherical mirror R

[1 d
01

1 d/n}

(126)

(127)

(128)

(129)

(130)



Applications of reflection and refraction Il. Optical waveguides and fibers.

Optical communication devices such as optical fibers, waveguides, switches or
attenuators are one of the most important fields for optical applications of organic
materials. Optical fibers are used mainly for light transmission while optical
waveguides are parts of optical devices used for light modulation. Advantages of using
light for information transmission include high capacity (~ 100 — 1000Mb/s) and low
loss (~ 0.16 dB/km).

channel optical waveguide

optical fiber

n;

Principle of an ideal planar waveguide

An ideal planar waveguide is formed by two parallel planar mirrors with reflectance of
1 separated by air. Let us assume that light propagates in the x direction and that the
oscillating electric field points in the y direction, or perpendicular to the plane of
incidence.

\4

We can use Fresnel’s equations for amplitude reflectance to find a condition for light
propagation in the waveguide. The Fresnel’s equation (97) can be modified using
Snell’s law and the condition that n; < ninto
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. _ Ncos6; —n cosq _ sin(6,-4,)

= 131
* ncosé +n.cosh,  sin(6 +6,) (131)

The equation (131) shows that for n; < n.the amplitude reflectancer, is negative for all

values of the incident angle. For the planar waveguide considered above, R = 1 and
consequently r, =—1. From the amplitude reflectance definition it follows that

Eoi = —Eor (132)

and the reflected wave amplitude is negative. Using the usual notation for the oscillating
fields we obtain

E; = E;; cos(kx — at) (133)
E, =—E,, cos(kx — at) = E,, cos(kx — ot — ) (134)

The equation (134) shows that upon reflection the phase of the electric wave is shifted
by 7.

Selfconsistency condition for propagation of light in a waveguide states that after two
reflections, the phases of the original and reflected waves must be same or differ by 2.

Given the situation in the above figure, the phase of the original (incident) wave at point
B with respect to point A can be expressed as

@ =kAB -t = 2772 AB — wt (135)

The wave twice reflected at points A and C has a phase at C in the form

Q= 277r AC -t 27 (136)

The phase difference is thus
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Ap =, — o, :%(AC—AB)—Zﬁ (137)
To satisfy the selfconsistency condition the phase difference must be an integer multiple
of 2. Using the fact that AC — AB =2dsiné& we can re-write the equation (137) as
2r i
Ap=2m =72d sind—2r (138)

where q = 0, 1, ... Defining the mode m of the waveguide as m = g + 1, the equation
(138) becomes

. A
sing, =m— 139
= (139)

The equation (139) gives the condition for light propagation in an ideal waveguide.
From there it follows that

mA < 2d (140)

Thus, if 2<2d only one mode m = 1 can propagate in the waveguide and such
waveguide is accordingly called a single-mode waveguide.

The picture of light propagation in a waveguide as repeated reflections of a single
ray is oversimplified. At each location there will be rays pointing upwards and
downwards at the same time. Their respective propagation vectors can be written as

kq=(ko0,k,) and k, =(k,.0-k,) (141)

The combination of the electric fields of these rays will give the spatial
distribution of electric field of light propagating in the waveguide.

k=1/2(k; +k )=k, = 5, (142)
where the propagation constant is newly denoted as /. This can be expressed as

2_2
m-z

B =kcos@, =,k - E

(143)

The electric field distribution for different modes is either symmetric or
antisymmetric with respect to the propagation axis.
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Planar dielectric waveguide

Dielectric waveguide is made of two or more materials with different refractive indices
and uses the phenomenon of total internal reflection on the interface between two

media.
n=1 No
; A
' n;
| d
____________ & : ) 2
6 = Onax No

Condition for the occurrence of total internal reflection gives the maximum incident
angle & = 6Gnax Of light which will be totally internally reflected inside the waveguide.
The angle is called acceptance angle. Using Snell’s law we have

Mo _sing, = cosé, =1-sin24 (144)

n;

Using the Snell’s law for the waveguide — air interface gives

&ziw/nf —sin?0,... (145)

n N

which leads to
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SiN Gy = /N7 —NZ (146)

The quantity sin Gnax is called numerical aperture and abbreviated NA. The distribution
of the electric field is similar to the ideal waveguide. The difference is at the interfaces
where the existence of evanescent waves causes penetration of the electric filed into the
neighboring medium.

bz

\eee N, e

nNja

=}

i

=

rja

The evanescent waves can be used to couple two parallel waveguides and this
phenomenon has important applications in optical communication devices. In the
following arrangement, two planar waveguides are separated by a small distance which
allows penetration of the electric field of waveguide 1 across the barrier into waveguide
2. Pj denotes light intensity (power) in the respective waveguides.

\ o
P1(0) ni
waveguide 1
/ No
/ N
waveguide 2
No
0 x’

Optical coupling between the waveguides can cause complete periodic exchange of
energy between the channels 1 and 2. Assuming that the initial power at x = 0 in channel
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1 is P4(0), the dependence of power on distance x in both channels can be expressed as

P,(x) = P,(0)cos® T'x (147)

P,(x) = P,(0)sin®I'x (148)

where I is a coupling coefficient. Graphically, this can be shown as

Il
P1O) Iy N\ ,1"'\\ ',’\\ ;7 PiX)
v/ \ 7
X i \ 7 \ v\ Pa(x
0 \/ Vi (Vi : 2(_)
0 X

Coupling of waveguides of an appropriate length can be used for optical switching or
dividing.

Optical fiber

Optical fiber is essentially a cylindrical optical waveguide. Many of the concepts
developed for optical waveguides can be used for optical fibers as well. Structure of a
fiber cross-section is shown in the following figure.

core, n;

cladding, no
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Optical fibers are classified according to the refractive index profile into stepped index
or graded-index fibers, and according to the number of modes into single-mode (core
diameter 1 — 10 microns) and multi-mode (core diameter 50 — 200 microns) fibers.
Numerical aperture can be defined in the same way as in the case of waveguides.

stepped-index

multimode

graded-index

multimode

}, Qﬁ e O = 1}') stepped-index
Q it single-mode

Gradient index optics

In gradient index optics the desired effects are achieved by graded changes of refractive
index rather than by shapes of the optical elements. The best-known example is the
radial graded-index lens (GRIN lens) which is a glass cylinder with refractive index
n(0) in the center. The index decreases radially with distance r from the center towards
the edges as

n(r) = n(0)£1—a—£2J (149)

Light entering perpendicularly one side of the lens propagates in a sine-like path with
the period 27 [/a inside the lens.

27[/\/5
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The length of the lens determines its function. The length is expressed in fractions of

pitch p which is equivalent to the period 27/Ja . Radial GRIN lenses are
commercially available and are widely used in laser printers, photocopiers, etc.

=
A
e _
0.125 pitch
0.25 pitch
0.50 pitch
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3. Polarization of light

Polarization of light is determined by the direction of oscillation of the electric field. So
far, we have considered the electric field vector aligned with one of the Cartesian
coordinate axes and used a scalar notation. When treating polarization of light this
approach will no longer be possible and we have to use vector representation for the
electric field of light. If not stated otherwise light will be propagating in the z-axis
direction. Electric field of light oscillating in the x-direction will be expressed as

E, =xE,, cos(kz — wt) (150)

where X represents a unit vector in the x direction. The equation (150) describes light
linearly polarized in the x direction. When viewed against the direction of propagation
this polarization state can be graphically represented as

A 4

Ex X

Light polarized in general direction is a vector sum of E in the x and y directions.

E=E,+E, (151)

Using the notation of the equation (150) we can write

E = XE,, cos(kz — at) + yE,, cos(kz — at) = (f(EOX + yEoy)cos(kz — wt) (152)
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The equation (152) describes again linearly polarized light.

Let us further consider generally oriented electric field with equal amplitudes in the x
and y directions,

We will examine the state of light in which the E, vector is shifted in phase by -2 with
respect to the E, vector.

E, =xE,, cos(kz — wt) (154)
E, =yE,, cos(kz — ot — 7 /2) (155)

The total electric filed will now be
E = E;(xcos(kz — at) + ysin(kz — wt)) (156)

The equation (156) is an equation of a circle with y
respect to the variables z and t. At a fixed point in space
the vector E rotates clockwise with time along a circle
at frequency . The corresponding state of light is
called right circularly polarized light.

s
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Similarly, if the Ey, vector is shifted in phase by 7/2 with respect to the E, vector the
resulting state of light is left circularly polarized light, described by

E = E, (X cos(kz — at) -y sin(kz — at)) (157)

It is now obvious from the equations (156) and (157) that a combination of right (R) and
left (L) circularly polarized light produces a linear polarization with double amplitude:

E=Eg +E, =Ey(Xcos(kz — at) + ysin(kz — at))+ Ey(x cos(kz — wt) — ysin(kz — at))

E = x2E, cos(kz — wt) (158)

e
N

Let us now go back to a general problem of arbitrary amplitudes E,, #E,, and

arbitrary phase shift ¢ of the E, vector with respect to the E, vector.
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E, = xE,, cos(kz — wt) (159)
E, = yE,, cos(kz — at + @) (160)

Omitting now the vector notation we can write

E
E—y = cos((kz — at) + @) = cos(kz — wt) cos ¢ —sin(kz — wt)sin ¢ (161)
0y
Ex _ cos(kz — wt) (162)

0x

which leads to

2
1—[ Ex j = sin(kz — at) (163)

0x

Using the equations (162) and (163) in (161) and squaring we obtain

2 2
E
LY 1_(Exj sin (164)
EOy EOx EOx

which leads to

2 2
E E.E
(Exj +| =L | —2—" Y cosp=singp (165)
EOx EOy EOXEOy

The equation (165) is a general equation of an ellipse tilted with respect to the x axis by
an angle « for which

EO EO
tan 2a = 2———2-C0s ¢ (166)
0x — =0y

The resulting state of light is an elliptically polarized light. The ellipticity can be due to
the difference in the electric field amplitudes and/or due to the general phase shift.
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Let us now examine a few special cases. When the phase shift ¢ of the E, vector is
equal to @=+7/2 the tilt angle « is zero and the polarization ellipse due to

Eox # Egy is aligned with the coordinate system.

y
A
Ey \
ny

When the phase shift isp=+7z/2 and the amplitudes are equal, E,, =E;, =E,, the

equation (165) reduces to an equation of a circle
Ef+E;=E§ (167)

resulting in circular polarization.

In the case of the phase shift ¢ =7z and general amplitude E,, # E,,, the equation

(165) reduces to

E
E,=—2E, (168)
E
0x

which describes linear polarization. The states of light characterized as linear and
circular polarizations are thus special cases of general elliptical polarization of light.
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Polarizers

Polarizers are optical elements or devices that transform natural light into linearly
polarized light. Natural light is characterized by random orientations of the electric field
vectors.

natural
light

Polarizers utilize directional anisotropy of one of the following optical phenomena:
- absorption

- refraction

- reflection

Absorption based polarizers

Absorption based dichroic polarizers make use of the anisotropy of absorption
coefficient (or imaginary refractive index n;) of certain materials. The best-known
example is a stretched film of oriented poly(vinyl alcohol) (PVA) saturated with iodine.
lodine attaches to the long-chain PVA molecules and forms an analogue of a conducting
wire. Electric field oscillating in the direction of the PVVA chains then causes motion of
conduction electrons along the wire, by which the electric field is attenuated (absorbed).
Natural light incident on such material emerges with only the electric field component
perpendicular to the PVA chains remaining. The device prepared upon this principle is
called a Polaroid sheet. The direction perpendicular to the PVA chains, that is, the
direction of maximum light transmission defines a transmission axis. Other materials
showing absorption anisotropy are crystals of some naturally occurring minerals, such
as tourmaline.
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Dependence of the intensity of natural light which passing two linear polarizers on the
angle @between the polarizers’ transmission axes is proportional to the square of the
cosine of the angle. This dependence is sometimes called Malus’s law.

1(0) = 1,c0s% 0 (169)

Detcctor

Refraction based polarizers

Anisotropy of the refractive index (or, more specifically, of its real part ng) gives rise to
the phenomenon of double refraction, or birefringence. Within the Lorentz oscillator
model, anisotropy of the refractive index is related to different spring constants for the
electron in different directions.

The same treatment as in the Chapter 2. leads to three different components of refractive
index along the three axes, ny, ny, n;. In some materials, the refractive index along two
of the three axes can be same. Such materials are called uniaxial materials. According to
the above figure, for example, the refractive indices along the y and z axes would be
same, ny = n,. The remaining axis, the x direction, would form the optical axis. The
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refractive index in the direction perpendicular to the optical axis is called ordinary
refractive index no

(170)

and the refractive index along the optical axis is called extraordinary index ne. The
difference between n. and n, is the measure of birefringence of a material.

An=(n,—n,) (172)

Birefringent materials can be both negative, such as calcite with An =-0.172, or positive,
such as quartz. Calcite is probably the best-known example of a birefringent material.

| Optic
| axis

Materials, such as mica, for which all three n,, ny, n, are different are called biaxial. The
birefringence of biaxial materials is measured as a difference between the largest and
smallest indices.

Calcite crystals are used as birefringent material in prism polarizers. The
prototypical polarizer consisting of two cemented prisms was introduced by W. Nicol in
1828, and is called Nicol prism. The incident natural light is divided by passing the first
prism into ordinary o and extraordinary e rays due to different refraction angles of
parallel and perpendicular electric field waves. The o-ray is totally internally reflected at
the interface with the second prism while the e-ray is refracted, enters the prism and
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exits it in the same propagation direction as the incident light. The result is a linearly
polarized light.

Optic axis
~
~

Nicol prism

Glan-Thompson polarizer is based on similar principle.

2 ; Optic axis
Absorbing paint

o-ray /or glass plate

e-ray

Glan-Thompson prism

Reflection based polarizers

Polarizers based on the phenomenon of reflection utilize the difference in reflectance of
light with electric field perpendicular to and parallel with the plane of incidence. As we
have seen in Chapter 2, there is an angle called Brewster’s angle for which the
reflectance of light with the parallel-oriented electric field is zero. The appropriate
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Fresnel equations can be written as

_tan’(6,-4)

A= (629 (172)
and
_sin®(6,-6)
T sin?(6,+ 6,) (173)

While R, can never reach zero, R becomes zero for 6, +6, = z/2 when the tangent
goes to infinity.

Reflectance

This difference in reflectance is used in the so-called pile-of-plates polarizer where
natural light incident at Brewster’s angle is reflected on multiple glass surfaces to
enhance the intensity of the completely linearly polarized light.
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Retarders

Retarders, alternatively called phase retarders, are optical elements that induce a phase
shift between the orthogonal components of the electric field of light. Retarders can be
either single-component elements for fixed pre-determined phase shift (waveplates) or
variable phase retarders for continuous phase adjustment (compensators).

Wave plates

Wave plates are parallel slabs of birefringent material of thickness d oriented with their
optical axis perpendicular to the propagation direction of incident light.

optical axis

X ot
o

El AE

d

Electric field components E, and E, along the optical axis and perpendicular to it
experience different refractive indices n. and n,, respectively. Consequently, they
propagate with different velocities v, and v, through the slab. Since both components

have the same oscillating frequency w, the difference in the velocities implies that the
wavelengths of the two electric field waves must be different, A, = A,. As a result,

upon exit from the slab the phases of the two waves will be different from the initial
phases at the incidence. Using the notation of the oscillating electric field

E, = xE,, cos(kz — at + ¢,) (174)
E, =yE,, cos(kz — ot +¢,) (175)

we define the phase difference at the incident surface as ¢y and that after passing
distance d in the slab as ¢;.
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@0 = (@y — 9y) (176)
Py = (CDyd ~ Pud) (177)

Realizing that the wavelength of the electric waves inside the slab is related to vacuum
wavelength A, via the refractive index as

Ay =nA (178)
we may write
2r 2r
Dxd = Px +7d = @ +Zdne (179)
(]
2r 2
Pyg = Py +7d =, +Zdn0 (180)
0
and
2r 2r 2r
4 :¢y+Zdn0—ng—Zdne=(po+ZdAn (181)

Finally, the phase difference due to the slab will be

27
P=0y— Py = de (182)

Quarter-wave plate

The quarter-wave plate (or A/4 plate) has its length d adjusted so that the phase
difference ¢ corresponds to one fourth of the wavelength, that isto +z/2. There are
two important special cases:

1. The initial phase difference is zero, ¢ = 0, and the amplitudes of the E, and E, waves
are same, Eox = Eqy. This corresponds to linearly polarized light with the electric field E
oscillating at 45 deg. with respect to the optical axis. Upon exit from the slab

Qg =Q+@y=x7/2

that is, the phase shift between the E, and E, waves will be #/2 and the resulting state
will be circularly polarized light.
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2. The initial phase difference is ¢ = /2, and the amplitudes Eox = Egy. This
corresponds to circularly polarized light. Upon exit from the slab

Qg =0+@,=0,7

that is, the phase shift between the E, and E, waves will be 0 or zand the resulting state
will be linearly polarized light.

The main use of quarter-wave plates is to convert linear polarization to circular
polarization and vice versa. Apart from the above two special cases, appropriate choice
of the initial phase shift and/or initial amplitudes can lead to arbitrary elliptical
polarization state.

Half-wave plate

The half-wave plate (or A/2 plate) has the length d adjusted so that the phase difference
@ corresponds to one half of the wavelength, that is to + . We can again distinguish
two special cases:

1. The initial phase difference is ¢ = 0, and the amplitudes Eox = Eqy. This corresponds
to linearly polarized light. Upon exit from the slab

Py =Q+@y =17

Optic \

that is, the phase shift i FHT o
between the E, and E, waves | | |
will be + 7 and the resulting
state  will be linearly
polarized light with the
electric field E oscillation
direction rotated by 90 deg.
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2. The initial phase difference is ¢n = -7/2, and the amplitudes Eox = Eqy. This
corresponds to right-circularly polarized light. Upon exit from the slab

Qg =Q+@y =712

that is, the phase shift between the E, and E, waves will be #/2 and the resulting state
will be left-circularly polarized light. The main use of half-wave plates is to change the
direction of oscillation of linearly polarized light or to change the direction of rotation
of circularly polarized light.

Variable retarders - compensators

Variable retarders are optical devices that can produce controllable phase shift to the
incident light. The best known compensator, the Babinet compensator, is composed of
two wedge prisms of birefringent material with the optical axes perpendicular to each
other and to the propagation direction of light. Light incident from the top will pass
distances d; and d, in the respective wedges. These distances can be continuously
adjusted by sliding the wedges on top of each other. The phase shift can be expressed as

¢=%An(dl—dz) (183)

A variation of the Babinet compensator is Soleil-Babinet compensator which has
uniform retardance over its whole surface and experiences no beam deviation.

Babinet compensator

Soleil-Babinet compensator
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Mathematical description of polarization

Complex polarization problems can be simplified by the use of a matrix based
mathematical treatment. General polarization state of light E is determined by its
constituent electric waves E, and Ey (equations (174) and (175)) which, for the purpose
of description of polarization, are fully characterized by their amplitudes Eoy, Eoy and
phases ¢y, @. We may thus omit the time and space dependent terms and re-write the
equations (174) and (175) as

EX = iEOXeiwx (184)
E, =yE,e” (185)
It is convenient to define normalized electric fields Ay, Ay by

Eox (186)

A=——"—
1/E§X+E§y

e
A=
EZ, + Egy

where ¢ is now the phase difference between E, and Ey, @ =g, - ¢ The quantities A,
A, form a vector called Jones vector J which is used for the description of the
polarization state of light

N

(187)

Examples of Jones vectors for linearly and circularly polarized light:

y linear polarization
in x direction J= [1} (189)
0
E g X
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y linear polarization

A in y direction 0
: JH (190
1
X
linear polarization
Y 0
. in general direction J= [C_OS } (191)
p at angle ¢from x sing
X
y left-circular
polarization 171

right-circular

polarization

1
H (193)

CIN, N

Change of the polarization state of light occurring upon passing optical elements can be
described by assigning each element a 2 x 2 matrix, the so called Jones matrix T.

input light X x output light
Jl 'J2

E optical element

\ T
y y
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The resulting polarization state of the output light J, can be then easily calculated as a
product of the Jones matrix T and Jones vector for the input light J;.

J,=TJ, (194)

Examples of Jones matrices for simple optical elements:

10
Linear polarizer in x direction T= {0 O} (195)
. ) 111 1
Linear polarizer at 45 deg. from x T= E e (196)
1 0
Wave plates T= 0 e (197)

I' = z/ 2 for quarter-wave plate, I'" =z for half-wave plate.

Optical phenomena related to polarization: Optical activity

Optical activity refers to the phenomenon of rotation of the direction of linearly
polarized light by passing through material.

X .
input light X output light
E B
optically active
\ material %
y y
d

Fresnel proposed a phenomenological model in which the linearly polarized light is
treated as a superposition of right- and left-circularly polarized light

E=E, +E, (198)

where

E, - %(&cos(kRz _ o) + §sin(kez — at)) (199)
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E, :%(icos(kLz _ot) + gsin(k_z - ot)) (200)

Generally, the propagation numbers for left and right-circular light are different,
k. # kg, which means nonequivalent refractive indicesn_ # ng. Thus, the velocity of
propagation of the L and R waves is different and after passing a distance d in the
material their rotation angles will be different. After superposition, the resulting linearly
polarized light will be rotated by an angle g.

input light output light

y y

s
N

EL

e

\irz
1)

The angle g normalized by the distance d is called optical rotatory power p and is
related to the difference in the refractive indices

ﬁ — 7Z'(I’]|_ — nR) (201)

P= P

Microscopic model of optical activity

The simplest microscopic model of optical activity assumes that on molecular level the
optically active medium is composed of conducting spirals, or helices. For example, the
silicon and oxygen atoms in quartz are arranged in either right- or left-handed helix
about the optical axis. Let us examine the interaction of the electric field of light with a
helix oriented with its axis parallel to the direction of E oscillation. The field will cause
electrons in the helix move up and down along the spiral, producing an oscillating
electric dipole moment p(t) parallel to the axis and oriented in the same direction as the
electric field. At the same time, the current due to the moving electrons will produce a
magnetic field and an oscillating magnetic dipole moment m(t) parallel with the helical
axis. However, the orientation of m(t) will either be in the same direction as p(t) or in a
direction opposite to p(t), depending on the sense (left or right) of the particular
molecular helix. Both oscillating dipoles p(t) and m(t) will give rise to orthogonal

65



oscillating electric fields Ey(t) and En(t). While the direction of Ey(t) will be
independent of the helix sense, the direction of Ey(t) will be reversed upon change from
an L-helix to an R-helix. The vector sum of E,(t) and E(t) will give the electric field
contribution due to interaction of light with the helix,

Es(®) =E (1) +E (1) (202)

The direction of E(t) will depend on the sense of the helix. Further, Es(t) will combine
with the input light field Ei(t) to produce the total output light field E(t)
E(t) = E (1) + E; (1) (203)

As a result, the field E(t) will be rotated with respect to Ei(t) and the direction of
rotation will be determined by the orientation of the field Es(t) and thus by the sense of

the helix.
p%m

<B=p

=>
b~ |
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Faraday effect

Faraday effect can be described as magnetically induced optical activity. An external
magnetic field applied on material in the direction of propagation of light causes
rotation of the direction of linearly polarized light.

B
_—
input light X X output light
E \ B
\ \&
y y

The angle of rotation £ is proportional to the length d and magnetic field B via a
material constant called Verdet constant V.

B =VBd (204)

The positive value of V corresponds to a material which causes right-hand rotation for
light propagating in the direction of B and left-hand rotation for light propagating
against B. The example in the above figure is thus for a material with a negative V. The
reversal of handedness is the main difference between optical activity and Faraday
effect, and can be exploited in, e.g., optical diodes.

X B X mirror X X mirror
e
N N ~ N
E | 5 E | | optically s
active
E material E
y y y y
X B X mirror X mirror
e
| B | optically I
i) active
E material E
E y y y
Faraday effect optical activity
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Electro-optical effects

Electro-optical effects refer to phenomena where externally applied electric field
induces birefringence in a material. In Kerr effect the birefringence is proportional to the
square of the applied field E via a Kerr constant K.

An = J,KE, (205)

A Kerr cell based on this effect consists of a glass cell filled with a polar liquid and
placed between orthogonally oriented polarizer and analyzer (crossed linear polarizers).
The electric field is applied perpendicular to the propagation direction of light and at 45
deg. with respect to the transmission axes of the polarizers. At zero voltage no light
passes the cell. With increasing E the cell starts working as a continuous wave retarder
and the cell transmits light accordingly. Kerr cells are used as high-speed shutters or
Q-switches in pulsed lasers.

Modulating
Polarizer voltage

Another important electro-optical effect is Pockels effect which occurs in certain
non-centrosymmetric crystals. The birefringence is proportional to the first power of
electric field applied in the direction of propagation of light.
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4. Interference of light

While in the preceding chapters we mainly treated interaction of light with matter, the
phenomenon of interference can be viewed as interaction of light with light.

General treatment of interference

Let us imagine two sources of light, 1 and 2, emitting plane electromagnetic waves that
propagate in directions given by the propagation vectors k; and k. The waves intersect
at point P and we will be interested in electric field and light intensity of the resulting
light wave at this point.

.
source2 Q — l

source 1

The electric field of the waves 1 and 2 is described by

The amplitudes Eo; and Eg, are written as vectors to describe the polarization (direction
of electric field oscillation) of the two waves. The resulting electric field at point P will
be given by a vector sum of the two waves

E=E +E, (208)

Since the quantity we are able to detect is not electric field but light intensity, we have
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to re-write the equation (208) using

| = <E2> =E2/2 (209)

where 7 is the period of light and we have neglected the constants ¢ and & appearing in
the equation (50). Expressing the square of E in the equation (208) leads to

E°=E-E=(E,+E,)-(E, +E,)=E? +E5 + 2E, -E, (210)

The corresponding light intensities may be defined as

l,=(E?) =E},/2 (211)
I, =(B3) =E%,/2 (212)
iy = 2(E; - E,)_ (213)

The intensity I3, is known as the interference term. Evaluating the time average in the
equation (213) gives

or

(E,-E,) =Eq -Eg((cos(k, - r +¢)cosat +sin(k, -r +¢)sin at)x

: : (215)
x (cos(k, - +@,) cos et +sin(k, -1 +@,)sin t))_
We may now use the following properties of the cosine and sine functions
<sin2 a>t> = <cos2 a>t> =1/2,  (sinwtcoswt) =0 (216)
to obtain
1

(217)
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which simplifies to
li, = Eq; - Egp cOS(ky -1 + ¢ — K, - =) = Eq - Egp COSS (218)
where we have defined the symbol & as the phase difference between the electric field
waves E; and E,.
The interference term intensity 1, is proportional to the dot product of the vector

amplitudes Eq; and Eo, and depends thus on the polarizations of the two waves. For
orthogonal polarization (E,; L E,,) the dot product is zero and there is no contribution
from the interference term to the total intensity. In most common situations the two
vectors Eg; and Eg; are parallel and we may drop the vector notation to write
Eo;-Eg; = EgiEq,.

Using the definitions (211) and (212) the equation (218) can be written as

l, = 24/1,1, cos S (219)
and the total intensity due to interference of the two light waves at point P will be

| =1, + 1, +2,1,1, coss (220)
We may now distinguish cases where cosé = 1 and the equation (220) becomes

Lnax = I+ 15+ 24141, (221)

The total intensity at point P is now larger than a mere sum of the intensities of the two
waves. This situation of maximum interference intensity is known as constructive
interference. On the other hand, in cases where cosd = -1 the equation (220) describes
the situation of destructive interference

in which the interference intensity reaches its minimum and is smaller than the sum of I;
and I,. In the special case of equal amplitudes Eo; = Eg» = Eg and equal intensities I; = 1,
= lp the equation (220) simplifies to

| =21,(1+coss) (223)

and the intensities at constructive and destructive interference conditions are
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lhox =41l and 1., =0 (224)

Conditions for interference

Let us now examine in detail the conditions for constructive and destructive interference
given by the phase difference &

The phase difference depends on the path difference traveled by the two waves (given
by the first two terms on the right-hand side of (225)) and on their initial phase
difference @1 - @,. For the interference to be observable, the phase difference must be
constant during the observation period of time. While for fixed light sources the path
difference does not change the same cannot be said about the phases ¢, @,. For
example, for natural light ¢ and ¢, change rapidly with time. The properties of the
phases ¢ are subject of the phenomenon of coherence of light.

For the purpose of the current discussion it will be sufficient to imagine that light
is described as coherent if the phases of all its constituent waves have a well-defined
relationship that does not change with time. For the two waves considered here this
well-defined relationship means that the difference ¢ - ¢, does not change with time.
There is no form of light which would satisfy this condition. Therefore, we take definite
intervals of time for which the light remains coherent and call these intervals coherence
time. Similarly, the distance which light travels during the coherence time is called
coherence length. In other words, coherent time is a time period for which the phases ¢
and ¢, remain constant and coherence length is a distance upon which ¢, and ¢, do not
change. The coherent length of natural light is on the order of or less than a few mm,
the coherent length of laser light can be up to several km.

Rigorous treatment of coherence requires the introduction of a normalized
autocorrelation function for the time dependent electric field E(t)

) <E*(t)E(t +T)>
9(T)= <E*(t)E(t)>

which describes the amount of random change that occurred to the electric field in time
T, that is, the value of g(T) reflects the degree of correlation between E(t) and E(t+T).
The function g(T) decreases monotonously in time, and the characteristic time z upon
which the value of | g(T)| decreases to 1/e of | g(0)| is called coherence time.
Summarizing the conditions for the observation of interference, that is conditions

(226)
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for the non-zero term (218), we have found that:
1. the waves E;, E, must be coherent
2. the polarizations of the waves E1, E, cannot be orthogonal

Natural interference phenomena

Interference of light can be readily observed in everyday life as, for example, changes of
color of soap bubbles or oil slicks on water surfaces. The phenomenon responsible for
these effects is interference of natural white light on thin dielectric layers. The situation
iIs described schematically in the following figure.

Nt n;

Light is incident upon a dielectric layer of thickness d at an angle 6; and is partly
reflected (as the ray 1) and partly refracted at an angle 6; at the surface. The refracted
portion is again partly reflected at the back surface and after being refracted once again
at the front surface it emerges as the ray 2 propagating parallel to the ray 1. Both rays
are focused by a lens into the point P where they interfere.

Let us examine the phase difference ¢ between 1 and 2 at the point P. We may
assume that the thickness d is small enough so that the phase of the light ¢ will not
change by passing the points A — B — C. This means that ¢, - ¢, and the equation (225)
will become
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and the phase difference is only due to the path difference of the rays 1 and 2. Using the
notation in the above figure we may write

§=%(nt(AB+ BC)-n,AD) (228)

where we used the relationship

kr = °r nr (229)

o

between the vacuum wavelength A, and propagation number k. We note that the
quantity nr on the right-hand side of the equation (229) is called optical path. Since

AB=BC =

d , AD=ACsing, = AC&siné’t and AC =2dtané, (230)
cosé, n;

the equation (228) becomes

s_27[2nd  2nd sin 6, (231)
Ay | cos6, cos 6,
and this simplifies using n/ Ao = A to
o= 47”d CoS 6, (232)

The purely geometrical consideration that led to the equation (232) did not take into
account the change of phase occurring upon reflection from the surfaces. Adding that,
the final expression for the phase difference becomes

5=477Td cosé, — (233)

We may now use the equation (233) to find conditions for observing maxima and
minima of the interference intensity. For the maxima we have

coso =1, whichistrue for 6 =2zm, m=0,1,2... (234)

and this leads to

d cosé, = (2m +1)% (235)
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Similarly, for the interference minima the condition cosd =-1 gives

dcosé, = 2mi
4

(236)

The conditions (235) and (236) show dependence on the thickness of the layer, the
refraction (and thus incidence) angle and wavelength of light.

We will now examine special
cases where one or two of the above
parameters are fixed. In case of
constant layer thickness d and a point
light source of constant wavelength
(monochromatic light) the situation
Is described in the figure on the right.
If, for example, the angle &, satisfied
the condition for intensity maximum
(235) and the angle &, the condition
for intensity minimum (236) one
would observe a pattern of light and
dark interference fringes (at points
P1 and P2) on the screen below the

point light

source

P1

oo

focusing lens. This figure is only schematic. In real systems one observes large numbers

Extended source
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of the fringes each
corresponding to a certain
angle 4. This  type
interference pattern is known
as interference fringes of
equal inclination as all rays
inclined at the same angle
arrive at the same point.



Next, we keep only the thickness of the dielectric film fixed and let the angles and
wavelength vary. Specifically, we may examine the situation of point white light source.

% ‘ point white

light source

" p1

blue light maximum

p A

red light maximum

The maximum intensity condition may be now satisfied for different angles depending
of the wavelength. Thus, for example, the angle &, might satisfy (235) for blue light and
the angle &, for red light. The result will be dispersion of the incident white light into its
constituent colors observable on the screen. The phenomenon described above is
responsible for the changing colors of soap bubbles or oil slicks, as mentioned earlier.

Optical instruments based on interference

Interference based optical instruments make use of the fact that easily measurable
change in interference light intensity reflects very small changes in the light path length.
Let us consider the condition for interference maximumcoss =1. Generally, we may
write

§=2m=kd = 27[% (237)

where d is the distance that one light ray traveled with respect to the other one. The
difference in the distance d corresponding to successive appearance of interference
maxima m, m + 1 is then
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Ad=(M+DA-mA=1 (238)

and the distance that would correspond to the intensity change between maximum and
minimum will be half of that, that is A/2. Since it is possible to measure intensity
changes of much smaller magnitude that Inax-Imin, it iS possible to measure accurately
phenomena that are related to changes in distance on the order of nm.

Michelson interferometer

The best-known and historically most important interferometer is Michelson
interferometer, schematically shown in the figure below.

mirror M1
I
/E\
A !
1o/2 ;
Ly

light source compensator

mirror M2

beam
splitter Lo

detector
(screen)

Light source provides light beam of intensity lo. The beam is divided equally into two
arms by a beam splitter. In each arm it is reflected by a mirror. The beam reflected by
the mirror M1 (beam 1) is again equally divided by the second pass of the beam splitter
and half of it passes in the direction of the screen. The beam reflected from the mirror
M2 (beam 2) is also divided by the beam splitter and half of it is reflected in the
direction of the screen. At the screen the two beams interfere. Since the beam 1 passes
the thickness of the beam splitter three times while the beam 2 only once, a
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compensator of the same thickness and material as the beam splitter is placed at the
same angle in the path of the beam 2. The lengths of the arms are L; and L, respectively,
and the mirror M1 is placed on a micrometric stage so that the length L; can be
continuously adjusted.

The intensities of beams 1 and 2 are same and we can use the equation (223) to
express the dependence of the interference light intensity on the phase difference

| = '30(1 +C0S6) (239)

Assuming that the path difference of beams 1 and 2 is smaller that the coherence length
of the light we may use the equation (227) for the phase difference. Further, since the
two beams propagate in the same direction their propagation vectors are same, and the
equation (227) simplifies to

dr dr
§=k2(LL-L)=—(L-L)=—-n(L-Ly) (240)
A Ao
The additional factor of 2 in the equation (240) is due to the fact that the beam 1 passes
the difference d twice. The condition for observation of the intensity maximum of 21, at
the center of the screen will be

m=2(L - L,) (241)

Michelson interferometer played an important role in several basic experiments in
physics (most importantly, in Michelson-Morley experiment which refuted the existence
of luminous aether) and its use today is limited.

Mach — Zehnder
interferometer Beam-

Mirror 4 splitter .

A configuration useful in
many applications is found in '
the Mach -  Zehnder H i
interferometer. The beams 1, 2
do not travel forth and back as

Detector

in the case of Michelson

configuration, and they can be H“7 e

well separated in space. Extended £ Beam-
source T splitter
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A transparent object placed into one beam will change the optical path difference and
thereby the interference pattern.

As seen in the equation (240) the phase difference is a function of the distance d,
refractive index n and wavelength of the incident light. Interferometers are used for
measuring values and changes in any of these parameters. A version of Michelson
interferometer with one arm 50 m long has been built in the Suzukakedai campus of
Tokyo Institute of Technology to measure small distance variations caused by
earthquakes. Sensitivity to small changes in distance can be used to check flatness of
quality of optical surfaces. Mach-Zehnder interferometers are used for measurements of
refractive indices of gases or to monitor plasma changes during thermonuclear
reactions.

Multiple-beam interference

So far, we have considered interference between two light beams. In many cases, this
treatment results in oversimplification of the problem. For example, in treating the
interference on dielectric layer we have neglected consecutive secondary reflections and
refractions of the refracted light beam. Including these secondary light beams
complicates the solution but at the same time reveals new phenomena and leads to new
applications of interference.

Let us consider the situation in the following figure. Light of the electric field Ey is
incident upon a parallel dielectric film at an angle &. The light will be repeatedly
reflected and refracted with
amplitude  external  and d
internal  reflectances and
transmittances of r, r’, t, t’,
respectively. The electric
field waves are denoted as
Eir, Ezr, ... for reflection and
Ei, Eat, ... for transmission.
We will be interested in the
electric field and intensity of
light resulting from the
interference of the reflected
light, and of the transmitted
light.
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Assuming that double passage through the film gives rise to a phase difference o (that is,
phase difference between adjacent rays) we may write for the electric field of the
reflected waves

E, = Eore'™
E2|" == Eotr'tlel(wtibw)

E,, = Eptr3te' (29 (242)

Ey = Eotr'(ZN -3) prgi(et-(N-D9)
,

The resultant electric wave will be a sum of all contributions in the equation (242)

Er- = Elr + Ezr +...+ ENr (243)

This can be re-written as
E, = Eoe‘“"{r + r'tt'e‘i5[1+ (r'2 e“5)+ (r'2 e“(s)2 +ot (r'2 e‘i‘s)N_Z}} (244)

This equation contains a geometrical series of the type 1+a+a+a’+... which is
convergent when |a| < 1 and the sum is equal to

1+a+az+a3+...:L (245)
1-a
Assuming that ‘r'z e*i‘s‘ <1 the equation (244) can be re-written as
_a) rlttle_ié‘

Further, if the dielectric film does not absorb light, we may take r = -r’ and tt’ = 1 - r?
and the equation (246) simplifies to

E, = E,e' {M} (247)

1_r2e 10
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Finally, using |, = E,E, /2 for the reflected interference intensity we obtain

2r?(1-cos o)

I, =1 248
'1+r* - 2r°coss (248)

r

where I; represents the incident intensity.
We could follow the treatment given above also for the transmitted electric field
waves. We would obtain for the transmitted intensity

1— r2)2

I =1. ( 249

Y14 rt—2rfcoss (249)
We could further use the trigonometric identity coss =1—2sin®(5/2) to manipulate

the equations (248) and (249) into

|I_r: eria-rdfsin?512) _ Fsin?(s/2) 250)

1+ 2ri@-r))fsin?(s572) 1+Fsin®(/2)

I 1 1

L= = — (251)
L 14 ria-rd)fsin2(s/2) 1+Fsin®(6/2)
where we have defined the term F as coefficient of finesse
2
2r
F = 252
(sz (252)

The dependence of I,/l; and I/l; on the phase difference ¢ is shown in the following
figures.

05
e~
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With increasing reflectance r? of the surfaces the transmitted light is concentrated into
increasingly sharp transmission regions (spikes) and the reflected light at the same time
shows sharp reflection dips.

Fabry-Perot interferometer

The above properties of multi-beam light interference are utilized in an important device,
the Fabry-Perot interferometer. The interferometer consists of two plane parallel
surfaces of high reflectance r separated by an adjustable air gap of width d. Devices
where the distance d is fixed are called Fabry-Perot etalon. Etalons can be also made of
a single quartz plate with parallel surfaces which are coated with metal for increased
reflectance. Both etalons and interferometers make use of the narrow transmittance
peaks. Recall that the phase difference ¢'is a function of the distance d, refractive index
n and wavelength of the incident light (equation (240)). The wavelength dependence of
transmission of Fabry-Perot interferometers is used, for example, in high resolution
spectroscopy. The most important application of Fabry-Perot etalons is their use as laser
resonator cavities. Here, the narrow transmission peaks are responsible for the spectrally
sharp monochromatic nature of laser light.
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Applications of interference on dielectric thin films

One of the most important applications of interference on dielectric film is as
anti-reflection coating on, e.g., glasses, camera lenses, etc. The material and thickness
of the dielectric film can be chosen so that the reflected rays interfere destructively upon
normal incidence.

No

Ng

It can be shown that for normal incidence and for the thickness of the film d = A/4 (that
is, ngd = Ao/4) the reflectance from the film-coated substrate is

2

YA

" :L:(MJ (259)
l; NyNg + Ny

Thus, if ni =n,n, the reflectance R = 0. For example, the MgF, coating (ng = 1.38) of

glass can reduce its reflectance from 4% to about 1 %. The thickness of the film is
chosen so that reflection is most suppressed in the yellow spectral region where human
eye is mot sensitive. For antireflection coatings that would cover broader spectral ranges
and that would suppress reflectance further it is necessary to use multi-layer coatings.

Multiple dielectric layers

Multiple layers are stacks of alternating high refractive index (ny) and low refractive
index (n.) layers of different thickness d,, dy so that
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and ny > ng > n_ > n,. The conditions are adjusted for constructive interference on
reflection. The spectral width of the reflected light AA increases with the ratio nu/n.
while the reflectance increases with the number of layers. Multiple dielectric layers are
used as spectrally selective mirrors in laser resonators or as optical filters.

Air

330 550 770

= Wavelength (hm)
Glass substrate

Interference filter

An interference filter is a combination of multiple dielectric layers serving as mirrors in
Fabry-Perot etalon of the thickness A and of an absorbing color glass. The narrow
thickness of the etalon ensures that the transmission peaks of the etalon are well
spectrally separated. The color glass then absorbs all but one of the peaks. The filter
selects from white light a single sharp peak of the width of about 10 nm and
transmittance on the order of 30 — 50%.

glass Ny N Ny NL N. Ny ng Ny air

white light

E—

monochromatic light

>

—

mirror mirror

- /)
YT

Fabry-Perot etalon
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5. Diffraction of light

Diffraction usually refers to phenomena which occur when light interacts with precisely
defined geometrical objects, such as sharp edges, slits, pinholes, etc. These objects
modify propagation of light and cause interference between light waves propagating in
different directions. In many senses, the phenomena of interference and diffraction are
very similar and their distinction in many cases, such as, for example, diffraction on
grating, is more or less historical.

Huygens principle

The simplest explanation of the diffraction phenomena is based on a principle formed in
1690 by C. Huygens. It states that every point of propagating electromagnetic wave is a
source of secondary spherical waves, and the original wave at a later time is an
envelope of these spherical waves. A planar uninterrupted wave is an envelope of
infinite number of secondary waves. Upon incidence on small objects, however, the
number of secondary waves in question becomes finite and the resulting wave is no
longer a planar wave. The interference between different parts of the non-planar wave is
the origin of diffraction phenomena.

I

%
—

N

non-planar wave

J

I

behind an object

planar freely propagating wave
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Diffraction on a slit

The previous figure is a gross oversimplification because even though the number of
secondary waves is finite, their size has to be taken very small and their number is still
very large. The problem of light diffraction on a slit can be analyzed using the following
scheme.

The slit is oriented along axis z and its width is D. We will examine the contribution to
the diffracted light which comes from secondary spherical waves along an imaginary
line aligned with the axis y at z = 0. The line is thus a cross-section of the slit at z = 0,
and stretches from y = —-D/2 to y = D/2. The diffracted light intensity is examined at a
point P which is at distance R from the center of the slit. We will be interested in the
changes of light intensity at the point P as the point moves further from the axis x, that
is as the angle & increases. To obtain the intensity dependence on @ it is necessary to
first express the electric field E at the point P. For that purpose, the length D is divided
into infinitesimal segments dy. The electric field dE due to dy can be expressed as

dE = g—rLsin(a)t —kr)dy (255)

where &, called source strength, is electric field per unit length at x = 0. The electric
field decreases with the inverse of the distance r from dy to P, as expected for a
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spherical wave. For further convenience, the oscillating component is expressed using a
sine function. In the equation (255) & /r is the amplitude of the infinitesimal field. We
will restrict our discussion to situations where R >> D. There, the values of r and R are
similar for any @ and we can approximate the amplitude with g/R. The most difficult
point about the equation (255) is the dependence of r on the actual position of dy, that is
on the value of y. Since r is part of the argument of the sine function it will contribute to
the phase changes between electric field originating from different dy. To overcome this
problem we will have to express r explicitly as a function of y and 6. First, we can use
the law of cosines to obtain

r’ =R%+y? —2Rysing (256)
or

2 2

r y y .

—=1+-"—-2-=-sInd 257

R? R2 R (257)

The equation (257) can be now expanded using the Maclaurin series

ORI FRACNRE O (258)
1 2!
to obtain
y2
r:R—ysin9+ﬁcosze+... (259)

For large R the contribution of the third term on the right-hand to the phase can be
neglected even for y = D/2. The resulting expression for r

r=R-ysing (260)

can be now used in the equation (255)
dE :g—RLsin(a)t—k(R— ysin@))dy (261)

To obtain the electric field E at the point P as a function of the angle & the equation
(261) must be now integrated with respect to y along the width of the slit, that is

D/2

E="L [sin(at-k(R- ysin6))dy (262)
R -D/2
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The integration results in

E_ g D sin[(kD/2)sin H]Sin

R (kD/2)sing S MA~KR) (263)
We can abbreviate
S =(kD/2)sing (264)
to write
E= ﬂsm—ﬂsin(wt -kR) (265)
R p

Intensity of light at point P is obtained by time-averaging the square of the electric field
in equation (265) which leads to

_1(&D *(sin g ?
-3 %)[7) .
For =0
1(g DY

Using this, we may write the final expression for the dependence of intensity of
diffracted light on diffraction angle as

. 2
|e=|oﬂj 268
) ()(IB (268)

The function % is sometimes called sine cardinal function and written as since.

The equation (268) was obtained on basis of the approximation R >> D. This is the so
called Fraunhofer approximation and the corresponding diffraction phenomena are
Fraunhofer diffraction phenomena. This approximation means that both incident light
and diffracted light can be approximated by planar waves. Since any wave can be
considered a planar wave at long enough distances, the Fraunhofer diffraction is also
referred to as far-field diffraction. The experimental arrangement for diffraction on slit
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is shown in the following figure.

The diffraction intensity dependence on @ has a strong maximum at = 0 and a series of

maxima and minima to both sides.
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Since there is no dependence on the z axis in the equation (268), the slit can be
arbitrarily long. The pattern depends strongly on the relationship between D (or b
according to the notation in the above figures) and the wavelength A, since the equation
(264) can be also expressed as

B=(DIA)sing (269)

For D >> 4, there is only one sharp maximum at & = 0. With decreasing width D, the
diffraction maximum at @ = 0 broadens and the maxima and minima series starts
appearing on both sides.

Fraunhofer vs. Fresnel diffraction

Situations where the Fraunhofer approximation does not hold, that is, where either the
incident or diffracted light waves are non-planar, correspond to the phenomena of
Fresnel diffraction. The evolution of Fresnel diffraction pattern on a slit into Fraunhofer
diffraction with increasing distance of the screen from the slit is shown in the following

figure.
@—LL—& Fraunhofer pattern

J/\]\\A increasing
— ' e distance R
L AJJ\VW L—  Fresnel pattern
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Double-slit diffraction

Diffraction on two parallel slits of the width b separated by distance a leads to more
complicated diffraction pattern, as shown in the following figure.

Multiple-slit diffraction

The above double-slit
diffraction is a special
case of diffraction of
light on N parallel slits
of the width b and
center-to-center
separation a.
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The diffraction pattern is a result of interference of light from individual slits, and of
interference of light originating from different slits. It can be shown that the dependence
of intensity of diffracted light on the angle & can be expressed as

_1(0)(sing 2(sinNa \?
') = NZ( Vi j[sinaj (270)
where as before
L =(kb/2)sing (271)
and
a =(ka/2)sing (272)

The original single-slit diffraction pattern (equation (268)) is thus modified by the term
(sinNedsing)? arising from the inter-slit interference. The interference pattern is now a
series of principal maxima occurring at « =0, 7, 27,..., and of subsidiary maxima. This
leads to a condition for the principal maxima of

asingd =mAi (273)

With increasing N the principal maxima become narrower and sharper, a phenomenon
reminiscent of multiple-beam interference.

N2

sin 6

sin@
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Diffraction grating

The above discussed multiple-slit diffraction is an example of transmission diffraction
grating. Generally, gratings are periodic arrays of diffractive elements that cause
changes to light amplitude or phase. Transmission gratings can be also formed from
completely transparent materials by periodical variations in the refractive index.
Reflection gratings, on the other hand, are optical surfaces with periodically patterned
reflecting grooves. Reflection grating forms similar diffraction pattern as the multiple
slit. The conditions for observing diffraction maxima are again given by the equation
(273), where the number m represents diffraction order of the grating. The best
diffraction efficiency, that is concentration of diffracted intensity into a specific order, is
achieved in the so called blazed gratings.

s (diffraction peak)
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B P, el
1st order (m = 1) ’ B

reflection grating
blazed reflection grating

Monochromator

The most important use of reflection gratings is for dispersion of light in spectroscopy.
For a given diffraction order, the diffraction angle is a function of the wavelength of
light. Thus, for example, incident white light will be dispersed into its constituent colors
upon diffraction from a grating. Devices that perform the function of color dispersion of
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light are called monochromators.

mirror

mirror

grating

entrance
slit

white light in

exit
slit

Diffraction and resolution of optical instruments

The phenomenon of diffraction plays an important role in determining the maximum
available resolution in imaging optical instruments. Imaging optical instruments usually
consist of a combination of lenses, the smallest of which will form an effective circular
aperture of the system. Light originating from a point on the object will then diffract on
the aperture and form a diffraction pattern in the image plane. The size of the diffraction
pattern determines the resolution of the system, that is, the smallest distance between

monochromatic light out

monochromator

Czerny-Turner

configuration

two point objects at which they can be still imaged separately.

The treatment of Fraunhofer diffraction on circular aperture of diameter 2a is quite
complicated and can be found in classical textbooks on optics. Dependence of the

diffraction intensity on the angle @is expressed as
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. 2
10)=1 <0)(—2J1(k?5'“ e)j 274)
kasin g
where J;(kasiné) is the first order of the Bessel function Jy,(u) defined as
i_m 27 )
Jm(U) _ J‘el(mv+ucosv)dv (275)
27 0

The diffraction pattern consists of a central circular maximum known as Airy disk. The
disk is surrounded by a series of Airy rings of decreasing intensity.

11O)

1.0

—10

-8.42
—7.02
—5.14
—3.83

The distance between the maximum and the first minimum is known as Airy radius and
can be written using the numerical value of the Bessel function as

q= 1.22R—’1 (276)
2a

For an imaging system focused on the screen, the distance R can be approximated by
focal length f. The ratio 2a/f determines the numerical aperture N.A. of the system. Thus

A
=122~ 277
g N A (277)
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There are several ways to define the optical resolution. The so called Rayleigh criterion
for optical resolution states that two point objects are resolved if their distance is such
that the maximum of the Airy disk image of one object overlaps with the first minimum
of the Airy image of the second object. The distance Al is then given by an equation
identical to (277)

Al=1.22- % (278)
NA

For the case of optical microscopy, the numerical aperture of the system is given by the
numerical aperture of the objective lens used. For high-magnification oil-immersion
lenses the achievable N.A. is on the order of 1 — 1.3, and the resolution defined by the
equation (278) is on the order of one wavelength. This determines the ultimate
resolution that can be achieved with conventional (far-field) optical microscopy.
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6. Principle of laser

The word “laser” is an abbreviation standing for “light amplification by stimulated
emission of radiation”. We will begin the treatment of the principle of laser by
explaining the phenomenon of stimulated emission.

Stimulated emission

In Chapter 1 we have seen that classical Lorentz damped oscillator model of
light-matter interaction leads to complex refractive index where the index imaginary
part describes absorption of light. To understand stimulated emission, we have to
abandon the classical model and have to introduce basics of quantum-mechanical
treatment of light-matter interaction.

In qguantum-mechanical picture the energy of electrons in atoms and molecules are
quantized. Electrons occupy discrete energy levels which are determined by atomic or
molecular orbitals in gases or liquid solutions and by energetic band structure in solids.
For the treatment of the light-matter interaction it is sufficient to consider the outermost
valence electrons. We may for simplicity begin by considering two energy levels i, j in
an atom (molecule). In chemistry and physics, such levels are usually described by
anharmonic potential curves along a configurational coordinate g. In optics, it is
sufficient to draw the levels as straight dimensionless lines, as shown in the following
Figure.

chemistry, physics

optics

Energy

g configurational coordinate
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In most organic matter, the separation of the outermost electronic energy levels falls into
the UV - visible spectral region. An atom or molecule with its electron on the lower
level i (ground state) can absorb a photon of an energy corresponding to the i — j level
difference. Such process of absorption leaves the electron on the upper level j (excited
state).

absorption

An atom or molecule with its electron on the upper level j can release energy by one of
the following processes:

1. Spontaneous emission. The electron relaxes to the level i by emitting a photon. The
process occurs with a characteristic time after absorption, the so called lifetime. Lifetime
of spontaneous emission of organic molecules is typically on the order of 1 — 100 ns.

2. Stimulated emission. The relaxation to the state i is stimulated by interaction of the
molecule with a photon of the same energy. Stimulated emission can be thought of as an
inverse process to absorption.

hv hv 2hv
ANNNAS> AN N>
AN
i i
spontaneous emission stimulated emission

An important property of the stimulated emission is that the incident photon and emitted
photon have same energy, phase, polarization and propagation direction. In contrast, the
phase, polarization and propagation direction of a photon emitted by spontaneous
emission are completely random.
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Einstein coefficients

Let us consider a system of N atoms (molecules), of which N; are in their ground states
and N; in excited states. We will examine the transition rate, that is rate of change of the
number of atoms on levels i, j. The population of the lower level decreases due to
absorption of light as

dN;
where u, is spectral energy density of the incident light in the units of W/m? and Bijis a
proportionality constant. Similarly, the population of the upper level decreases due to
stimulated emission as

dN;
In contrast, the depopulation of the upper level due to spontaneous emission is
independent of incident light and can be described as

dN; _

e ~AuN; (281)

which has a simple solution of

N, (t) = N, (0)exp(~A;t) (282)

Without the presence of external light source, the population of the excited state decays
exponentially with a lifetime 7 related to the coefficient A;i as

The proportionality constants Bjj, B; and A;i are called Einstein coefficients of absorption,
stimulated and spontaneous emission.

In thermal equilibrium, the rates of population change of levels i and j must be equal.
Thus

and this leads to
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N Bju,

= v 285
A;i + Bju, (289)

At the same time, the equilibrium ratio Nj/N; can be determined from Boltzmann
distribution as

E;
N, TP kT h
By BN N LIV exp(— _Vj (286)

where the difference in the energy of the two levels corresponds to the energy of the
incident photon

Combining (285) and (286) we can express the spectral energy density as

hv

Ae kel A /B.
U = i _ n- (288)

v hv hv

For the limit of infinite temperature the spectral energy density should approach infinity,
which is according to (288) possible only when

We may thus drop the coefficients and rewrite the equation (285) as

Nj Bu

. v (290)

. A+Bu,
The two Einstein coefficients are related as

A 8B
E: = (291)
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Population inversion
Let us now consider the following situations.

1. N;> N;; this situation corresponds to thermal equilibrium. There is larger probability
that an incident photon will be absorbed than that it will cause stimulated emission.
After passing the medium, the incident light is attenuated.

2. Nj < Nj; this situation is called population inversion. There is larger probability that
an incident photon will cause stimulated emission than that it will be absorbed.
Since each incident photon results in two outgoing photons during stimulated
emission, light is gradually amplified by passage through the medium. This process
of amplification is one of the principles of laser operation.

In terms of light intensity, the two above situations can be described using the following
Figure. Light of initial intensity 1(0) incident on a medium has intensity I(d) after
passing a distance d in the medium.

1(0) I(d)

In the case of equilibrium population, the decrease of intensity 1(d) due to absorption
can be written as

1(d) = 1(0)exp(—a(v)d) (292)

where a(v) is the absorption coefficient. An analogical equation is used for the case of
population inversion where the increase of intensity 1(d) due to stimulated emission is
written as

1(d) = 1(0)exp(y(v)d) (293)

Here, the coefficient 1 v) is called amplification coefficient. The two coefficients are
related via

y(v)=-a) (294)

The ratio of the amplified-to-incident intensity is called gain G.
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1) _g (295)

The amplification coefficient is related to the population inversion and to the Einstein
coefficient as

y)=(N; - Ni)B% (296)

Methods for realizing the population inversion

So far, we have considered a simple two-level system. Since the probability of
spontaneous emission is generally non-zero, for such a system

Nj Bu

\\P

—— v 1 (297)
A+Bu,

and population inversion cannot in principle be realized. Population inversion requires

at least three energy levels that can be populated by the atomic (molecular) electron. A

three-level scheme is shown in the following Figure.

A Na
Az
v
\P)
r Az
) A2
pumping
laser
emission
\ 4 v Ny

The coefficient I determines the probability of the N; — N3 transition induced by
pumping. The sum population of all three levels is N. We may now write the rate
equations for levels N1, N2, N3 upon pumping in the absence of stimulated emission as

102



dN,

dN
d—t2=_A21N2 + AN, (299)
dN
d_tSZFNl = (Agp + Ayp) N3 (300)

The solution of the above equations leads to

Nl — A21(A31 + ASZ) N (301)
Aor (A + Agp) + T(Ayy + Ag)

N, = Aol N (302)
Por (P + Ag) +T(Ayy + Agy)
For a three-level system, population inversion between levels 1 and 2 (N, > Nj) can be
achieved if

rs Az{u %j (303)

2

which means that, generally, to obtain population inversion with reasonable pumping
energy, the coefficient A; must be small and Az, >> Ag;.

Optical resonator

Achieving population inversion is not the only condition for laser operation. For
sustainable operation, the medium has to be placed inside an optical resonator which is
essentially a Fabry-Perot etalon with one partially and one totally reflecting mirrors.
After a population inversion is prepared in the medium, initially only spontaneous
photons are emitted in all directions. Of those, only the photons which propagate along
the axis of the resonator will be reflected by the resonator mirrors back to the medium.
Once in the medium, these photons will now trigger an avalanche of stimulated
emission in the same direction of propagation, that is, along the resonator axis. The
stimulated photons will be again reflected by the other mirror and by passing the
medium they will further amplify. The properties of same directionality and polarization
of stimulated emission thus create a positive feedback in the optical resonator. Part of
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the amplified light will exit the resonator by the partially reflecting mirror and will
propagate with high directionality in space as a laser beam. The principle of positive
feedback in laser resonator is shown schematically in the following Figure.

Pumpinﬂ energy
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Mirror r-/_/ \ /nu.dium
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mirror
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Spectral properties of laser emission

The spectrum of laser emission is determined by two factors: 1. Emission spectrum of
the lasing medium. This is usually a broad structureless band. 2. Transmission modes of
the Fabry-Perot etalon. These are narrow transmission peaks due to the multi-beam
interference discussed in the Chapter 4. The widths of the peaks determine the quality of
the resonator which is expressed in terms of a quality or Q factor. The Q factor is a ratio
of the frequency of a mode 1y and its half-width ov.

Q=v,/ov (304)

The spectrum of laser light is a superposition of the two above factors. For simple
resonators usually a few resonator modes overlap with the medium emission spectrum
and the resulting laser is a multi-mode laser. Addition of one or more Fabry-Perot
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etalons of different mode spacing into the laser cavity leads to the selection of just one
transmission mode and the corresponding laser is a single-mode laser.

emission spectrum
of lasing medium

resonator
ov modes
J k
multi-mode
A ﬂ laser emission

additional etalon
modes

single-mode
laser emission

Types of lasers
Laser can be divided according to several criteria:

A) Type of lasing medium

Gas lasers: the lasing medium is a molecular or atomic gas. He-Ne, He-Cd, N, CO,,
Ar’, Kr', excimer, etc.

Dye lasers: the lasing medium is a solution of organic dyes. Rhodamin, Coumarin, etc.
Solid-state lasers: the lasing medium is a doped inorganic crystal. Nd-YAG, ruby,
Ti-Sapphire, etc.
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Semiconductor laser diodes: the lasing medium is a semiconductor PN junction.
AlGaAs, InGaAs, InGaASsP, etc.

B) Pumping metods

Lasers can be pumped into the state of population inversion by electric discharge (gas
lasers), electrical current (laser diodes) or optically by flash lamps, semiconductor
diodes or other lasers (dye lasers, solid-state lasers)

C) Modes of operation
Modes of operation can be either continuous wave (cw) or pulsed operation. Pulsed
lasers range between ns and fs lasers.

Characteristics of laser light

The stimulated emission and resonator modes determine the following characteristics of
laser light: large coherence length, low divergence of propagation, narrow spectral
bandwidth, Gaussian intensity profile.

Gaussian intensity profile of propagating laser beam

i= foe—ﬁrgf'wz
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Terminology

A

absorption WA

Ampere’s law 7 ~— LiEH
amplification coefficient HEMR AR I
amplitude reflectance R S S
amplitude transmittance PRIR 2
analyzer TFTAY—
angular frequency £ JE R
anisotropy Loy s
anti-reflection coating BB 1L
atomic orbital JRF-HiE

B

beam splitter =LA AT v H
biaxial i (o)
birefringence BImdr

Boltzmann distribution R < 550
Brewster’s angle TI— A K — A

C

calcite JrfgA

charge 2]

circular polarization Mt

coherence oAbk —L R
coherence length b —L U ADES
coherence time Ik — L2 XD
compensator B AR

complex representation e 3

concave lens LIRS~y
constructive interference HEINA T4
convection current pSpi

convex lens L X

D

damping EE=3

destructive interference PR T
dichroic TALraAy s, B (D)
dielectric film 5 B A5
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dielectric layer
diffraction

diffraction grating
dispersion
displacement current
dye laser

E

Einstein coefficients
electric dipole
electric discharge
electric field

electric field intensity
electromagnetic spectrum
electromagnetic wave
electro-optical effect
ellipse

elliptical polarization
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equilibrium population
equation of motion
evanescent wave
excited state

extraordinary (refractive index)

F
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Faraday effect
Faraday’s law
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finesse coefficient
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Fraunhofer approximation
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graded index lens
ground state

H

half-wave plate
harmonic function
|
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interference filter
interference fringes
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Kerr effect

L

laser
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light

light amplification
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linear polarization
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mirror
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near field
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non-linear optics
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Q
Q-factor

quartz
quarter-wave plate
R

radial

ray

ray tracing
Rayleigh scattering
reflection
reflectance
refraction
refractive index
resolution
resonance
resonator
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rotatory power

S

scattering
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single-mode
single-mode laser
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spectroscopy
spherical

spontaneous emission

spring constant
stimulated emission
T

tangential

thermal equilibrium

total internal reflection

transmittance
transverse wave
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U

uniaxial Hiil (o)
w

wave equation Wz 8 R
wavelength W&

wave plate W Rk
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