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1. Quantum mechanics of the molecule-radiation interaction 
 

Classical treatment of the interaction between an atom or molecule and 
electromagnetic radiation based on Lorentz oscillator model assumes that an electron is 
attached to the nucleus by a spring and responds to the oscillating electric field of light. 
The model correctly predicts the dispersion relation for the real part of the refractive 
index. To account for the effects of light absorption by atoms or molecules, the model 
has to rely on introducing an arbitrary damping of the electron oscillatory motion. The 
damping does not have any apparent physical interpretation in the classical theory. Still, 
the theory succeeds in correctly predicting the frequency dependence of the imaginary 
part of the refractive index in the form of the Lorentzian absorption line shape. For the 
physical meaning of the absorption process we have to turn to the quantum-mechanical 
description of the molecule-radiation interaction. In the semi-classical approach which 
will be introduced here the molecule is treated quantum mechanically and its equation 
of motion is the time-dependent Schrödinger equation. The electromagnetic radiation is 
treated classically based on Maxwell’s equations. This approach is sufficient for the 
explanation of the processes of light absorption and stimulated emission; the 
phenomenon of spontaneous emission has to be introduced as phenomenological. For 
the full treatment of spontaneous emission, theory including quantization of the 
electromagnetic field would be necessary.  

 
1.1. Unperturbed system 

The semi-classical treatment of the molecule-radiation interaction begins with the 
description of the unperturbed system. Let ),( trΨ  be the time dependent 
wavefunction of the molecule. The Schrödinger equation is 

),(),( trH
t

tri Ψ=
∂

Ψ∂
h        (1) 

where H is the Hamiltonian containing the operators for kinetic and potential energy. If 
H is time-independent,  can be written as a product of space- and 
time-dependent components  

),( trΨ

)()(),( trtr ϕψ=Ψ       (2) 

States that can be described by Eq. (2) are called stationary states. Inserting (2) into Eq. 
(1) gives 
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For Eq. (3) to be valid for all r and t, both sides must be equal to a constant E. The 
resulting two equations are 

)()( rErH ψψ =        (4) 

which is the time-independent Schrödinger equation for energy eigenvalues, and 

 
h

Ei
tt

t
−=

∂
∂

)(
1)(

ϕ
ϕ        (5) 

Eq. (5) is easily solved to give  

 )exp()( tEit
h

−=ϕ       (6) 

Thus, the total wavefunction of the unperturbed system is generally 

 )exp()(),( tEirtr
h

−=Ψ ψ       (7) 

Since we are concerned with interaction of the molecule with electromagnetic radiation, 
we consider, for simplicity, two electron energy states 1 and 2.  

 

state 1

state 2

)exp()(),( 1
11 tEirtr

h
−=Ψ ψ

)exp()(),( 2
22 tEirtr

h
−=Ψ ψ

E1

E2

 

 

 

 

 

The corresponding wavefunctions ),(1 trΨ , ),(2 trΨ  satisfy the energy eigenvalue 
equations 

  ),(),( 111 trEtrH Ψ=Ψ

 ),(),( 222 trEtrH Ψ=Ψ       (8) 

and the time-dependent wavefunctions can be written as 
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 )exp()(),( 1
11 tEirtr

h
−=Ψ ψ       )exp()(),( 2

22 tEirtr
h

−=Ψ ψ         (9) 

The energy difference between the states corresponds to the transition frequency ω0: 

 012 ωh=− EE                         (10) 

The total wavefunction can be written as a linear combination of the wavefunctions of 
the states 1, 2: 

 ),(),()(),( 2211 trCtrtCtr Ψ+Ψ=Ψ         (11) 

which should be normalized at all times 

 1)()(),(),( 2
2

2
1

* =+=ΨΨ∫ tCtCdrtrtr
V

        (12) 

 

1.2. Interaction with radiation 

Interaction of the molecule with electromagnetic radiation results in change of the 
molecular potential energy which can be described by introducing a new Hamiltonian 

 HH ′+  

where H is the unperturbed part from Eq. (8) and H’ is the interaction part. The 
corresponding Schrödinger equation can be written as 

( ) ( )),()(),()()(),()(),()( 22112211 trtCtrtCHHtrtCtrtC
t

i Ψ+Ψ′+=Ψ+Ψ
∂
∂

h     (13) 

Given the known stationary solutions of the unperturbed states in the form 

 ),(),( trH
t

tri i
i Ψ=
∂

Ψ∂
h          (14) 

the Eq. (13) gives 

( 2211
2

2
1

1 Ψ+Ψ′=⎟
⎠
⎞

⎜
⎝
⎛ Ψ+Ψ CCH

dt
dC

dt
dCih )

*

       (15) 

where the space and time dependence notation has been omitted for simplicity. 
Multiplying Eq. (15) from left by , integrating over all space and making use of the 1Ψ
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normalization and orthogonality conditions gives on the left side 

 
dt

dCi
dt

dCdr
dt

dCdri 12
2

*
1

1
1

*
1 hh =⎟

⎠
⎞

⎜
⎝
⎛ ΨΨ+ΨΨ ∫∫    (16) 

and on the right side 

drtEiHtEiCdrtEiHtEiC ∫∫ −′+−′ )exp()exp()exp()exp( 2
2

1*
12

1
1

1*
11

hhhh
ψψψψ    (17) 

Combining (16) and (17), we obtain 

 ∫∫ ′−+′= drHtiCdrHC
dt

dCi 2
*
1021

*
11

1 )exp( ψψωψψh    (18) 

and similarly  

 ∫∫ ′+′= drHtiCdrHC
dt

dCi 1
*
2012

*
22

2 )exp( ψψωψψh    (19) 

The Eqs. (18) and (19) are time dependent Schrödinger equations for the coefficients C1 
and C2 which can be, in principle, solved for any given form of the interaction 
Hamiltonian H’. 

 

1.3. Form of the interaction Hamiltonian for harmonic perturbation 

Electromagnetic radiation is usually described by oscillating electric field 
characterized by frequency ω and propagation number k: 

 )cos(0 tkzEE ω−=       (20)  

For optical frequencies, the size of typical molecule is much smaller than the 
wavelength and spatial variations of electric field across the molecule are negligible. We 
may therefore drop the space dependence of electric field and use 

 )cos(0 tEE ω=        (21) 

Considering a molecule, the electric field will act upon a dipole moment  

        (22) rrμ ee
i

i −=−= ∑

where the sum is over all electrons contributing to the dipole moment and e is electron 
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charge. Due to the interaction the corresponding potential energy will be changed by 
. Assuming for simplicity that E points in the x direction, the corresponding 

interaction Hamiltonian is written as  
μE ⋅

 xteEtEH )cos()cos( 00 ωμω ==′      (23) 

where x is the x-component of r. The operator H’ has an odd parity , 

meaning that 

)()( rHrH ′−=−′

ii H ψψ ′*  must also have odd parity and 

   and  ∫ =′ 01
*
1 drH ψψ ∫ =′ 02

*
2 drH ψψ   

The Schrödinger equations for coefficients C1 and C2 then simplify to 

 21002
1 )cos()exp( μωω tEtiC

dt
dCi −=h  

 12001
2 )cos()exp( μωω tEtiC

dt
dCi =h     (24) 

where the dipole moment matrix elements are 

 ∫= drxe 2
*
121 ψψμ   and  ∫= drxe 1

*
212 ψψμ    (25) 

The matrix elements given in Eq. (25) describe electric dipole moments due to 
transitions between states 1 and 2, and as such are called transition dipole moments of 
electronic transitions. 

 

1.4. Approximate solutions: perturbation theory 

General solutions of the Schrödinger equations (24) are complicated and the 
equations are often solved approximately using time-dependent perturbation theory. 
Perturbation theory can be applied in cases where the Hamiltonian is in the form H+H’, 
H representing Hamiltonian of the unperturbed system and H’ the perturbation. If the 
solutions (wavefunctions and energies) of the unperturbed system are known exactly 
and if the perturbation H’ is small compared to H, the solutions of the perturbed system 
can be found using the unperturbed solutions as a basis. In the case of Eqs. (24) we 
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assume that the perturbation E0 is small compared to the energy of the system, and we 
may set the initial values at time t = 0 to C1(0) = 1 and C2(0) = 0. This initial condition 
states that the molecule is in state 1 (called ground state) at t = 0. Solving the Eqs. (24) 
for these initial values will give solutions in the first order of perturbation theory which, 
for our purpose, will be sufficient. Using the first order solution in the Eqs. (24) would 
further give solutions in the second order, and repetition of this process would result in 
an approximate solution that could be written as a power series of E0, describing 
nonlinear optical effects. 

Using C1(0) = 1 and C2(0) = 0 in Eq. (24) gives 

01 =
dt

dCih        (26) 

which has a trivial solution, and 

 )cos()exp( 0120
2 ttiE

dt
dCi ωωμ=h      (27) 

Using the identity )exp()exp()cos(2 titit ωωω −+=  we obtain 

 ( )))(exp())(exp(
2
1

00
1202 titi

E
i

dt
dC ωωωω

μ
−++−=

h
  (28) 

The Eq. (28) should now be integrated with respect to time from 0 to t, which is the 
period for which the perturbation acts upon the system.  

Using ∫ += caxadxax )exp(1)exp(  we obtain, for example 

 ∫ +
−+

=+
t

i
tidtti

0 0

0
0 )(

1))(exp())(exp(
ωω
ωωωω  

and the solution for C2(t) in the first order of perturbation theory as 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−
+

+
+−

=
ωω

ωω
ωω

ωωμ

0

0

0

0120
2

))(exp(1))(exp(1
2
1)( titiE

tC
h

  (29) 

Taking into account the magnitude of electromagnetic frequencies near resonance ω0, 
ωωωω −>>+ 00  and we may neglect the first term in Eq. (29). This approximation is 

usually called rotating wave approximation. The Eq. (29) then simplifies to 
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 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−
=

ωω
ωωμ

0

0120
2

))(exp(1
2
1)( tiE

tC
h

    (30) 

Instead of the value of coefficient C2(t) we will calculate the physically important 

quantity 2
22

*
2 )()()( tCtCtC =  which gives the probability that the molecule will be in 

state 2 (excited state) at time t. 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−−−−
= 2

0

00
2

2
12

2
02

2 )(
))(exp())(exp(2

4
1)(

ωω
ωωωωμ titiE

tC
h

  (31) 

Using 2sin2coscos 22 ααα −=  the solution simplifies to 

 
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

⎟
⎠
⎞

⎜
⎝
⎛ −

= 2
0

02

2

2
12

2
02

2 )(
2

sin
)(

ωω

ωω
μ tE

tC
h

    (32) 

The requirement that E0 be small ensures that the approximate solution (32) does not 
violate the normalization condition. 

The solution (32) is plotted in Figure 1 as a function of the detuning ω0 − ω. As 
expected, the probability of finding the molecule in excited state is maximum for 
ω0 = ω, where it is 
proportional to t2. However, if 
the time t is finite, the 
probability is non-zero for 
certain values of ω0 − ω, a 
fact that is related to the 
Heisenberg uncertainty 
principle. 

   
         
     

-2π/t-4π/t-6π/t 2π/t 4π/t 6π/t0

|C2(t)|2

ω0 − ω

 
 Figure 1     
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1.5. Transition rate 

Another important physical quantity is the transition rate between states 1 and 2, 
which gives rate of the absorption of light by the molecule (number of photons absorbed 
per second). The rate is defined as the probability of finding the molecule in the excited 
state divided by time t 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

==Γ
t

tE
t
tC

2
0

02

2

2
12

2
0

2
2

12

2

2
sin

4
)(

ωω

ωω
μ
h

    (33) 

The time-dependence in (33) can be eliminated by using the limit 

 )(2)(sin
2

2

lim a
ta
at

t
πδ=

∞→

       

where δ(a) is Dirac’s delta function. The expression (33) simplifies to 

 )(
2 0

2
12

2
0212 ωωδμπ

−=Γ E
h

     (34) 

which is an important result in quantum mechanics, often referred to as Fermi’ golden 
rule. In its general from, Fermi’s golden rule states that the probability of a 
quantum-mechanical transition is proportional to the square of the matrix element of the 
interaction Hamiltonian.  

Instead of the electric field amplitude E0 which does not take into account the 
frequency dependence we may use the electromagnetic field energy density defined as 

∫ = 2
002

1)( EdW εωω       (35) 

and use well-known property of the Dirac’s delta function 

      (36) ∫ =− )()()( 00 ωωωωδω WdW

to obtain  

 )( 0
2

122
0

12 ωμ
ε

π W
h

=Γ       (37) 

The transition rate is related to the Einstein’s coefficient of absorption BB12 via 
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)( 01212 ωWB=Γ . The expression (37) was derived for the x-component of the dipole 
moment. From averaging over all orientations a correction factor of 1/3 has to be added 
in the Eq. (37). The resulting expression for the Einstein’s coefficient B12B  thus reads 

 2
122

0
12 3

μ
ε
π
h

=B        (38) 

The expression for the Einstein’ coefficient of stimulated emission BB21 could be 
obtained in the same way by taking 012 ωh−=− EE  in Eq. (10). One would obtain B12B  
= BB21.  

 

1.6. Spontaneous emission 

The treatment presented so far describes processes of absorption and stimulated 
emission – processes that occur only in the presence of the perturbation. As seen from 
the Fermi’s golden rule (37), if W(ω0) = 0 (without light) the rate Γ12 = 0 and the 
transition does not occur. After the perturbation is switched off, molecule in the excited 
state would stay in this state forever. This is contrary to the experimental observation 
that molecules decay to their ground states spontaneously in relatively short times. The 
corresponding process is called spontaneous emission. For full treatment of spontaneous 
emission it is necessary to use quantum theory of electromagnetic field. In 
semi-classical approach, the effect of spontaneous emission can introduced 
phenomenologically into the Schrödinger equation for coefficient C2 (24) as a new 
decay route. 

20
120

1
2 )cos()exp( Ctti

E
iC

dt
dC

SPγωω
μ

−−=
h

   (39) 

In the absence of perturbation (E0 = 0) 

 2
2 C

dt
dC

SPγ−=        (40) 

which is solved easily to obtain 

 )exp()0()( 22 tCtC SPγ−=       (41) 

In (41), the phenomenological constant γSP is related to the Einstein’s coefficient A as    
2γSP = A, and to the excited state radiative lifetime τR as 
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 SP
R

γ
τ

21
=        (42) 

For completeness, the Einstein’s coefficients for stimulated and spontaneous processes 
are related as 

  1232

3

B
c

A
π

ωh
=        (43) 

The processes of absorption, stimulated emission and spontaneous emission are shown 
symbolically in Figure 2. 

 

1

2
ħω0

1

2

1

2
ω0 2 ħω0 ω0

absorption stimulated emission spontaneous emission

ħ ħ
 

 

 

 

Figure 2 

 

1.7. General solutions: optical Bloch equations 

The Eqs. (24) provide an exact description of the state of two-level molecule in the 
presence of oscillating electric field. The solutions by perturbation theory are 
approximations in the sense that they retain only first order solutions for very weak 
perturbation. For more general description, it is useful to introduce density matrix ρij 
defined as 

 2
111 C=ρ       2

222 C=ρ  

       (44) * *
2112 CC=ρ 1221 CC=ρ

The diagonal elements represent populations of the ground and excited states while the 
off-diagonal elements describe coherences, that is relationship between phases of the 
two state wavefunctions. The definition (44) leads to the following conditions 

 12211 =+ ρρ   (normalization)        (45) *
2112 ρρ =

 12 



Equations of motion for the density matrix are expressed as 

 
dt

dCC
dt

dC
C

dt
d i

j
j

i
ij *

*

+=
ρ

      (46) 

The derivations with respect to time of coefficients Ci can be taken from the Eqs. (24). 
Substitution of (24) to (46) yields 

 ( ))exp()exp()cos( 021012
22 tititi

dt
d

R ωρωρωρ
−−Ω−=    (47) 

where we used the symbol ΩR for 

 
h

120 μE
R =Ω        (48) 

Similarly,  

 
dt

d
dt

d 2211 ρρ
−=        (49) 

and 

 ( 22110
12 )exp()cos( ρρωω )ρ

−−Ω= titi
dt

d
R     (50) 

Using again )exp()exp()cos(2 titit ωωω −+=  and the rotating frame approximation, 
that is neglecting the fast oscillating terms ))(exp( 0 ti ωω + , we can rewrite (47) as 

 ( )))(exp())(exp(
2 021012

22 titii
dt

d R ωωρωωρρ
−−−−

Ω
−=   (51) 

By using a substitution 

 12012 ))(exp(~ ρωωρ ti −=   21021 ))(exp(~ ρωωρ ti −−=  

 1111
~ ρρ =    2222

~ ρρ =    (52) 

the Eqs. (47), (49) and (50) become 

 ( 2112
1122 ~~

2
ρρ )

~~ ρρ
−

Ω
−=−= Ri

dt
d

dt
d      (53) 

 ( ) 1202211

*
2112 ~)(~~

2

~~
ρωωρρρρ

−+−
Ω

−=−= ii
dt

d
dt

d R    (54) 
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The set of equations (53) and (54) is known as optical Bloch equations describing the 
interaction of 2-level molecule with classical electromagnetic radiation. When solving 
the set of first order differential equations we assume the solution in the form 

 )exp()0(~)(~ tt ijij λρρ =        (55) 

and insert the assumed solution into Eqs. (53) and (54). For the Eq. (53), for example, 
we obtain 

 0)0(~
2

)0(~
2

)0(~
211222 =

Ω
+

Ω
−− ρρρλ RR ii  

Combining with expressions obtained from the other equations we may write a matrix 
form 

 0

)0(~

)0(~

)0(~

)0(~

)(0
22

0)(
22

22
0

22
0

21

12

22

11

0

0

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−
ΩΩ

−

−−
Ω

−
Ω

ΩΩ
−−

Ω
−

Ω
−

ρ

ρ

ρ

ρ

λωω

λωω

λ

λ

iii

iii

ii

ii

RR

RR

RR

RR

 (56) 

The condition that the determinant of the above 4x4 matrix is equal to 0 gives the 
equation for the coefficients λ 

 ( ) 0)( 22
0

22 =Ω+−+ Rωωλλ      (57) 

The equation (57) has three roots 

 01 =λ   and  Ω±=Ω+−±= ii R
22

03,2 )( ωωλ    (58) 

where we have introduced a new symbol Ω for simplicity. Using the three roots (58) we 
can write the general solution of Bloch equations in the form 

 )exp(~)exp(~~)(~ )3()2()1( titit ijijijij Ω−+Ω+= ρρρρ    (59) 

The three coefficients )3()2()1( ~,~,~
ijijij ρρρ can be determined from the initial values )0(~

ijρ  
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for a given problem and from the first and second derivatives at time t = 0 of the matrix 

elements obtained from the Bloch equations, 
0

)(~

=
⎥
⎦

⎤
⎢
⎣

⎡

t

ij

dt
tdρ

 and 
0

2

2 )(~

=⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

t

ij

dt
td ρ

. For the 

initial conditions of the molecule being in the ground state, 

 0)0(~
22 =ρ  ,  1)0(~

11 =ρ   and  0)0(~)0(~
2112 == ρρ   (60) 

solving the respective three equations for the )3()2()1( ~,~,~
ijijij ρρρ  coefficients gives 

 ⎟
⎠
⎞

⎜
⎝
⎛ Ω

Ω
Ω

=
2

sin)(~ 2
22

tt Rρ       (61) 

For the case of resonance ω0 = ω, the definition (58) gives ΩR = Ω and (61) further 
simplifies to 

 ⎟
⎠
⎞

⎜
⎝
⎛ Ω

=
2

sin)(~ 2
22

tt Rρ         (62) 

As can be seen from Eq. (62), the population oscillates periodically between ground and 
excited states with frequency ΩR. This phenomenon occurring during the interaction of 
a two-level molecule with strong electromagnetic field is called Rabi oscillation and the 
corresponding frequency ΩR is a Rabi frequency. Figure 3 shows the Rabi oscillations 
for various values of the detuning (ω0 − ω). 

 

 

 

 

 

 

 

Figure 3 (reprinted from [1]) 
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1.8. Effect of spontaneous emission in Bloch equations 

The effect of spontaneous emission can be included in Bloch equations 
phenomenologically, similar to Eq. (39). The resulting equations have the form 

 ( ) 222112
1122 ~2~~

2
ργρρ

~~ ρρ
SP

Ri
dt

d
dt

d
−−

Ω
−=−=     (63) 

 ( ) 1202211

*
2112 ~))((~~

2

~~
ργωωρρρρ

SP
R ii

dt
d

dt
d

−−+−
Ω

−=−=   (64) 

The solution of the equations (63) and (64) proceeds in a similar way as that of the Eqs. 
(53) and (54) by solving the roots of a 4x4 matrix determinant. For the initial conditions 
(60) the solution for the excited state population is 

 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛ Λ

Λ
+Λ−

Ω+
Ω

=
2

3exp)sin(
2

3)cos(1
22

)(~
22

2

22
tttt SPSP

RSP

R γγ
γ

ρ  (65) 

where 2
4
12

SPR γ−Ω=Λ . Figure 4 shows the effect of increasing ratio γSP/ΩR on the 

Rabi oscillatory behavior. Increasing radiative rate γSP causes increased damping of the 
Rabi oscillations which disappear completely for γSP/ΩR > 1. 

 

 
  
 
 
 
 
 
   
 
 

Figure 4 (reprinted from [1]) 
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2. Excited states of organic molecules and excited state relaxations 
 

The preceding chapter dealt with general description of the interaction of light with 
a quantum mechanical system, described by a wavefunction ),( trΨ . In this chapter, we 
will specify the ground and excited states of molecules that correspond to transitions in 
the optical part of electromagnetic spectrum. We will also deal with the various 
processes that lead to the formation and relaxation of molecular excited states.  

 
2.1. Classification of excited states 

Molecules with electronic excited states and transitions in the UV and visible part of the 
spectrum can be broadly divided into three groups: 
1. Molecules that absorb radiation because of an electronic transition localized on a 

single bond. An example is a carbonyl group > C = O, which gives rise to absorption 
of light at about 290 nm. 

2. Molecules containing conjugated π-electron systems, where the electrons of C = C 
bonds become delocalized and are responsible for the molecules’ ability to absorb 
light in the entire visible range due to π−π* transitions. 

3. Molecules that contain a transition metal ion in a coordination compound. The 
interaction of the d electrons with the ligands lifts the 5-fold degeneracy and enables 
transitions between the split d orbital levels (d-d transitions). Such transitions are 
often in the visible part of the spectrum. 

Of the above categories, the conjugated systems are by far the most important group of 
molecules with optical electronic transitions and the rest of the talk will concentrate on 
these systems. 
 
2.2. Electronic states of conjugated and aromatic systems 

There are several methods that can be used to calculate the electronic states of 
conjugated systems. These include MO LCAO, free electron method for linear 
conjugated systems or perimeter-free electron orbital model for aromatic systems. In the 
Hückel approximation, the σ and π electrons are treated independently, the latter being 
considered responsible for the optical properties. As an example, electronic states of the 
molecule of benzene can be expressed as linear combinations of the six 2pπ orbitals 
ϕA, ϕB, ... ϕB F of individual carbon atoms. The possible linear combinations of the atomic 
orbitals are restricted by the requirement that the resulting molecular electronic 
wavefunctions confirm to the symmetry of the molecule. The group theory of molecular 
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symmetry gives the following six molecular orbitals as linear combinations based on the 
properties of the D6h symmetry group of benzene as 

FEDCBAe

FEDCBAe

FEDCBAe

FEDCBAe

FEDCBAb

FEDCBAa

ϕϕϕϕϕϕψ
ϕϕϕϕϕϕψ
ϕϕϕϕϕϕψ
ϕϕϕϕϕϕψ

ϕϕϕϕϕϕψ
ϕϕϕϕϕϕψ

+−++−=
−−+−−=
−−−++=
+−−−+=

−+−+−=
+++++=

22
22

22
22

2

2

1

1

1

1

   (1) 

 
The symbols a, b, e correspond to the respective symmetries of the states. Graphical 
depiction of the resulting π  molecular orbitals together 
with the corresponding energies are shown in Figure 5. 
The lowest a state is fully-bonding, the highest b state 
fully anti-bonding, the e states are doubly degenerate. 
The lowest electronic transition occurs from e1g (π) to e2u 
(π∗). The two shades represent phases of the molecular 
wavefunctions, pointing either up or down with respect to 
the plane of the molecule. Apart from the symmetry 
notation that originates from the character table of the 
respective symmetry point group, the subscripts u and g 
refer to the wavefunction being either even (g) or odd (u) 
with respect to reflection in the center of gravity (a 
property called parity).  
                                                         Figure 5 
The six-fold degenerate 2p orbital energy levels of individual        (reprinted from [6]) 
atoms split into 6 energy levels of the molecule: 

 βα 22,1 ±=E    βα ±=4,3E    βα ±=6,5E    (2) 

Two of the energy levels are doubly-degenerate. The symbols α and β correspond to 
Coulomb and resonance (exchange) integrals, defined as 

  ∫= dVH MM ϕϕα * ∫= dVH MN ϕϕβ *    (3) 

where the indices M, N denote neighboring atomic orbitals and H is the interaction 
Hamiltonian. 
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The effect of the length of the linear conjugated system or the size of the aromatic 
system on the electronic wavefunctions and energies can be easily illustrated using the 
electron-free models. For example, in the perimeter free electron orbital model (PFEO), 
an electron is considered as moving freely in a one-dimensional loop around the 
aromatic molecular perimeter. The problem is equal to the problem of a particle in 
1-dimensional potential well. Assuming the potential energy at the bottom of the well to 
be zero and outside of the well infinity, the time-independent Schrödinger equation to be 
solved has the form 

 )()(
2 2

22

xE
x

x
m

ψψ
=

∂
∂

−
h       (4) 

The wavefunction must satisfy the boundary condition  

 )()( lxx +=ψψ        (5) 

where x is the coordinate along the perimeter and l is the perimeter length. Solution of 
the Schrödinger equation gives 

 

)/2sin(1)(

)/2cos(1)(

1

2

1

0

lnxlx

lnxlx

l

n

n

πψ

πψ

ψ

=

=

=

     (6) 

for the wavefunctions and 

 2

22

2ml
hnEn =        (7) 

for the energy, with m being the electron mass. For the quantum number n > 0, each 
state is doubly degenerate because the electron can move clockwise or anticlockwise 
around the perimeter. Dependence of the state energy on the perimeter as l-2 is now 
obvious from Eq. (7). With increasing conjugation length, i.e. with increasing number of 
aromatic rings, the energy of the states, as well as the energy separation between 
adjacent states, decreases. This decrease gives rise to the well-known optical property of 
π-conjugated systems, i.e. the spectral red shift with the increase of conjugation length.   
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2.3. Singlet and triplet states. 

So far, we have not included explicitly electron spin in the treatment of the 
light-molecule interaction. Each energy level can be populated by two electrons with 
opposite spins (+1/2, -1/2). Upon electronic transition, the electron can either remain in 
the same spin state, resulting in anti-parallel configuration, or change its spin, resulting 
in parallel configuration. The anti-parallel (or paired) configuration state, for which the 
total spin number S = 0, is called singlet state. On the other hand, there are three 
different ways to achieve the parallel configuration (the one for which |S|=1), with the 
resulting projection of the total spin onto z-axis being Ms = -1, 0, 1. As a result, the 
parallel configuration state is triply degenerate and as such is called a triplet state. The 
situation is schematically shown in Figure 6. It can be shown based on Pauli’s principle 
that two electrons with anti-parallel spins have non-zero probability to be found at the 
same location, while for parallel-spin electrons this probability is zero. Thus, on average, 
parallel-spin electrons are farther apart in space and the resulting lower Coulomb 
repulsion lowers the energy of triplet state with respect to singlet.  

mS= 1/2

mS= 1/2 MS= 1

mS= -1/2

mS= -1/2

MS= -1

mS=1/2
MS= 0

mS= -1/2

Figure 6 
 
2.4. Basic selection rules 

In the previous chapter we have derived an expression for the rate of electronic 
transition in the form of Fermi’s golden rule (Eq. (34)). The expression contains the 
matrix element of the transition dipole moment  
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  ∫ ∫=−= drdre 1
*
21

*
212 ψψψψ μrμ      (8) 

For the transition to have finite probability the integral in Eq. (8) must be non-zero. This 
condition gives rise to a set of conditions called selection rules that the electronic states 
have to fulfill for the transition to occur. Each electronic state is characterized by a few 
basic parameters: energy, spin multiplicity, symmetry, and for centrosymmetric 
molecules also parity. Except of energy, these properties contribute to the value of the 
integral (8). Basic selection rules are: 
1. Symmetry. Essentially, electric dipole transitions between electronic states of the 

same symmetry are forbidden. This selection rule is not obvious by a glance at (8), 
and the integrand has to be evaluated for each x, y 
and z component of the vector r with respect to 
the symmetry of individual components. In terms 
of symmetry group theory, only if the product has 
the symmetry A1 will the integral be non-zero. 
Ground electronic states are generally occupied 
by paired electrons and as such have the A1 
symmetry. The whole integrand (8) will be of the 
symmetry type A1 if both the transition dipole 
moment operator (any of its x, y, z components) 
and the excited state wavefunction belong to the 
same symmetry type.          
Parity. In trast to the symmetry selection rule, the

n

4

3

2

1

function:

odd (u)

odd (u)

even (g)

even (g)
x

  Figure 7                       
2. con  parity selection rule is easy to 

3. ule, the Eq. (8) has to be re-written using 

understand by realizing that the integral (8) vanishes for integrands of odd parity. 
Since the operator r itself has an odd parity, the parity of the states 1 and 2 must be 
different. Thus, g – u and u – g transitions are allowed while u – u and g – g 
transitions are forbidden. This selection rule is illustrated schematically in Figure 7 
for wavefunctions of a particle-in-box. 
Spin-multiplicity. To understand this r
wavefunctions including spin components. The wavefunctions ψi will be thus 
products of the spatial and spin parts 

)()( σχψψ iii r=       (9) 

   The Eq. (8) will now have the form 

     (10) ∫= σσχψσχψ drdrr )()()()( 11
*
2

*
212 μμ
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The transition tial part of the wavefunction. The  dipole operator acts only on the spa
integration in the Eq. (10) can be thus separated according to the coordinates as 

∫ ∫= σσχσχψψ ddrrr )()()()( 1
*
21

*
212 μμ    (11) 

The condition of orthogonality of the spin wavefu
integral in the Eq. (11) can be non-zero only when 

nctions means that the second 
)()( 12 σχσχ = , i.e. when the 

spin states of the ground and excited states are same. In other words, the spin 
multiplicity rule states that electric dipole transitions between states of different 
spin multiplicity are forbidden. In conjugated systems, spin multiplicity refers to 
either singlet (non-degenerate state) or to triplet (triple-degenerate state). 

 of uni-molecular photophysical processes 
 
2.5. Overview

The Chapter 1 dealt with theoretical treatment of absorption, stimulated and 
of complex photophysical 

processes that can occur on an isolated 

It should be noted that, by 
definition, the ground state  

spontaneous emission. The three phenomena are basis 
molecule upon interaction with light. In 

describing the processes, it is customary in literature to use the following notation: 
S0   ground singlet state (state 1 of the preceding chapter) 
S1   first excited singlet state (state 2 of the preceding chapter) 
Sn   higher excited singlet states (n>1) 
T1   first excited triplet state 
Tn   higher excited triplet states (n>1) 

corresponding to T1 is S0, i.e., 
ground triplet state T0 does not 
exist. The processes can be 
illustrated by the so called 
Jablonski diagram (Figure 8), in 
which energy levels are drawn 
as horizontal lines, upward 
pointing arrows correspond to 
population of higher states and 
downward 

Figure 8 
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v xiii vii
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arrows to depopulation (relaxation) of excited states. The full lines depict processes in 
ive), the broken lines processes without involvement of 
ophysical processes can be divided into the following 

rved using strong light sources (ii). T1 – Tn are spin-allowed and are 

rescence. S1 – S0 fluorescence is most commonly observed 

idly (ps) and is the 

 was the Fermi’s golden rule: 

which light takes part (radiat
light (radiationless). The phot
categories: 
a) Absorption (radiative excitation) transitions. Spin-allowed S0 – S1 and  S0 – Sn are 
the most often encountered transitions (i). S0 – T1 and S0 – Tn are spin-forbidden but 
can be obse
commonly observed using pulsed excitation (iii). S1 – Sn can be observed using short 
pulse excitation (iv). 
b) Luminescence (emission or radiative de-excitation) processes. Transitions between 
states of the same multiplicity are called fluorescence, those between states of different 
multiplicity phospho
luminescence process, occurring on ns time scales (v). T1 – S0 phosphorescence is 
spin-forbidden, resulting in weak, long-lifetime process (vi). Sn – S0 fluorescence is a 
rare process observed in only a few compounds (azulene) (vii). Tn – S0 
phosphorescence is also a rare process, observed e.g. in fluoranthene (viii). Tn – T1 
fluorescence is an allowed process observed, e.g., in azulene (ix).  
c) Radiationless transitions. Transitions between states of the same multiplicity are 
called internal conversion, those between states of different multiplicity intersystem 
crossing. S2 – S1 and Sn – Sn-1 internal conversion occurs very rap
most likely de-excitation process of higher singlet states (xi). T2 – T1 and Tn – Tn-1 
internal conversion is also spin-allowed rapid process (xii). S1 – T1 (and S1 – Tn) 
intersystem crossing are the main population processes of triplet states and are 
commonly observed (xiv). T1 – S1 intersystem crossing is possible by thermal activation 
of T1 state and is responsible for the phenomenon of delayed fluorescence (xvi). Sn – Tn 

intersystem crossing has been observed for several compounds (xvii). In the following 
sections, some of the above processes will be described in more detail.  
 
2.6. Absorption lineshape 

The result of quantum mechanical considerations for the transition rate between 
ground and excited electronic states

 )(
2 0

2
12

2
0212 ωωδμπ

−=Γ E
h

     (12) 

Plotting the frequency dependence of the transition rate according to the Eq. (12) would 
give, contrary to experimental observations, a singular line at ω0, as shown in the left  

 23 



Figure 9 

part of Figure 9. This singularity is a consequence of the approximations made during 
rivation of the absorption lineshape is mo

n of the overall dipole moment resulting from the 
n w

the derivation of the Eq. (12). The correct de re 
complicated and involves calculatio
interaction of molecular wavefunctio oment is, on the 
other hand, related to refractive inde izability. The refractive index would 

ith electric field. The dipole m
x via polar

separate into real and imaginary parts, the latter being related to the absorption 
coefficient. 

Instead of following the above procedure we may realize the following property 
of the Dirac’s delta function 

 
( ) 22

0
0

/)( lim γωω0

πγωωδ
γ +−

=−
→

     (13) 

The a

 

rgument of the limit (13) is known as the Lorentzian lineshape function 

( ) 22
0

/)(
SP

SP
LF

γωω
πγω
+−

=       (14) 

where γSP has the meaning of the rate of spontaneous emission. Fermi’s golden rule is 
thus the result of the approximation 0→SPγ . The expression for the transition rate 
which includes the proper frequency dependence should be written as  

 
( ) 22

0 SP

2
12

2
0212 2

SPE
γωω

/πγμπ
+−

=Γ
h

     (15) 

tion rate
wice the rate of 

the spontaneous emission which, in turn, is related indirectly to the radiative lifetime. 
hortening of the radiative lifetime thus c

effect known as radiative broadening. 

The Lorentzian lineshape of the transi  is shown in the right part of the Fig. 9. 
The full width at half maximum (FWHM) of the line corresponds to t

S auses broadening of the absorption line, an 

0 ω0
ω

12Γ Γ12

0 ω0
ω

FWHM = 2γSP0.5
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2.7. Absorption vibronic transitions 

The treatment of absorption in Chapter 1 was simplified by concentrating on 
electron wavefunctions and states and neglecting the effect of the vibration motion of 
atomic nuclei. Such treatment is possible in the so-called Born-Oppenheimer 

nt the fact that electrons, because of their much 
smaller m
approximation, which takes into accou

ass, move much faster than the vibrating nuclei. It is thus possible to 
completely neglect the coupling between the nuclear motion and electron distribution. 
The total wavefunction of a state ),( RrΨ  can be written as a product of the electronic 
wavefunction )(rψ  and nuclear wavefunction )(Rχ : 

)()()( RrRr χψ=Ψ ,       (16) 

As the vibration motion of nuclei does affect the energy levels of electrons, the 
wavefunction (16) should be now used instead of the simple electron wavefunctions in 
the expression for the transition dipole matrix element (5), where the operator μ now 
has the form 

∑
⎠

⎜⎜
⎝

⎛
+−= e

ji
i

*
2

*
212 χψ rμ

 ∑∑ +−=
j

jj
i

i Zee Rrμ        (17) 

The transition dipole matrix element is then 

 ∑ ⎟⎟
⎞

drdRZe jj 11χψR    (18) ∫

which can be separated as 

∫ ∫ ∑ ∫ ∫∑ +−= dredRdre
i

i 1
*
21

*
21

*
212 χψψχχψψ rμ

functions the second element on the right is 
ritten as 

       (20) 

pproximated by quantum oscilla
square of the matrix element (20), it is customary to denote  

dRZ j
j

j 1
*
2 χR   (19) 

Due to orthogonality of the electronic wave
zero and the matrix element can be w

∫∫= drdR 1
*
21

*
212 ψψχχ μμ

The transition probability derived in Chapter 1 is thus modulated by a factor depending 
on the overlap of the nuclear vibrational wavefunctions, which are usually 
a tors. Since the transition rate is proportional to the 
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2

1
*
212 ),( ∫= dRS χχχχ       (21) 

The quantity ),( 12 χχS  is called Franck-Condon factor of an electronic transition. 
Similar reasoning leads to the formulation of Franck-Condon principle: Because 

e electronic transition takes 
the most probable transition occurs between states with the same nuclear coordinates 

v = 0 or higher vibrational levels of the excited state. 
ented by an arrow in the Fig. 10 appears as a Lorentzian 
. Further, the Fig. 10 shows only one vibrational mode v 

th place much faster than the vibrational motion of nuclei, 

(position).  
The principle can be illustrated using the scheme of Figure 10. Instead of simple 

horizontal lines as in the Jablonski diagram, the electronic state potential energies are 
drawn as anharmonic oscillators. The vibrational states of the nuclei now appear as 
additional set of levels v = 
0, 1, 2, … in each 
electronic state. The 
scheme also shows the 
square of the oscillator 
vibrational wavefunctions 
for a few vibrational levels. 
The Franck - Condon 
principle states that the 
only transitions possible 
are those that connect the 
two electronic states by 
vertical arrows. The 
scheme also indicates that 
the most probable 
transitions to and from 
higher vibrational levels 
will be those from the 
oscillator turning points. 
At room temperature (and 
at lower temperatures) the 
transitions almost exclusively
occur from the v = 0 vibra-  
tional level of the ground state to 
Each transition which is repres
line in the absorption spectrum

                  Figure 10    
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and its overtones. In complex aromatic molecules, there are large numbers of 
esponding to the different vibrational modes. Again, each 

             

Figure 11 

 characterized by frequency-dependent 
molar absorption (extinction) coefficient ε(ω), expressed usually in units of 

.mol-1.cm-1]. According to Beer’s law,  

vibrational frequencies v corr
is represented in the absorption spectrum by a narrow Lorentzian line. The overall 
room-temperature absorption spectrum as commonly observed is an envelope of all 
vibronic (electronic + vibrational) transitions occurring in the molecule, as shown 
schematically in Figure 11. 
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2.8. Absorption: relation to experimental observables 

Absorption of light in matter is usually

[L

ICdI )(ωε−=      
dl

where C is sample concentration, l length and I light intensity. Another quantity often 
used in relation to absorption is absorptio

 (22) 

 
n cross-section σ(ω), in units [cm2]. σ(ω) is 

related to Beer's law as: 

 In
dl

where n is the number of molecules in unit volume. However, since Eq. (22) is usually 
solved using decade log

dI )(ωσ−=       (23) 

arithm and Eq. (23) using natural logarithm, the relationship 
between the two quantities is 

303.2)( N/)( Aωε=      (24) σ ω

with NA the Avogadro’s constant. It is possible to show that the integrated absorption 
coefficient is related to the transition dipole matrix element as 
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h
    (25) 

 is speed of light. 

bsorption spectrum is usually limited by ional 
states and by various processes that cause broadening of the originally sharp electronic 

sorption bands to individual singlet states 
1

se process to the absorption transition  
e ground 

e excited state. For aromatic molecules in a 
edium (liquid solution or solid matrix), the excited state vibrational 

 the 0 vibrational level of the excited state due to collision 
interactions or exchange of phonons. In m

)10

where c  
The frequency dependence of the absorption coefficient is called an absorption 

spectrum. The practical amount of information that can be obtained from conventional 
a the complexity of electronic and vibrat

transitions. Mostly, it is possible to assign ab
S , S2. …, and obtain Franck-Condon factors for limited electronic-vibrational 

(vibronic) transitions. An example of 
absorption spectra of a series of 
aromatic compounds (acenes) is 
shown in Figure 12. The spectra 
nicely illustrate the effect of the size 
of the conjugated aromatic system 
(perimeter length l) on the energy of 
the system. The spectra of the largest 
compounds, pentacene and tetracene, 
also show well resolved vibronic 
structure.  

 

Figure 12 (reprinted from [5]) 

 

2.9. Fluorescence spectra 

Fluorescence transition S1 – S0 is an inver
S0 – S1. In absorption, the transitions occur from the 0 vibrational level of th
state to 0 or higher vibrational levels of th
condensed m
populations quickly relax to

ost cases, absorption into higher excited 
states Sn is followed by relaxation into the first singlet S1. Thus, fluorescence process 
proceeds (apart from a few exceptions) from the 0 vibrational level of the first excited 
state to 0 or higher vibrational levels of the ground singlet state. This observation is 



sometimes called Kasha’s rule.  
Fluorescence quantum efficiency φF is defined as  

AFF nn /=φ       (26) 

where nA is the number of photons absorbed by a molecule per time, and nF number of 
photons per time emitted as fluorescence by the molecule. Fluorescence spectrum F(ω) 
is the y at frequency ω: 

 )(ωφ FF

 process of 
absorption and 

ould 
give rise to the 

 

 

igure 13 

n defined as relative fluorescence quantum efficienc

∫
∞

= ωd       (27) 
0

If the vibrational wavefunctions and energies in ground and excited states were 
same (which, approximately, is the case of polyatomic molecules), the

fluorescence w

 
 

v = 0

v = 1

v = 2

v = 3

phenomenon of 
mirror symmetry 
between the 
absorption and 
fluorescence spectra, 
as shown in Figure 
13. 
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The m rror symmetry rule can be also reasoned theoretically considering the relations 

 ψψχχ μμ      (28) 

for absorption and 

** ψψχχ μμ

r fluorescence. Compared to Eq. 
tum numbers 0 and v, v’ to distinguish the vibrational states. Since, 

parts of (28) and (29) are symmetric  

i

∫∫= drdRv 1
*
210

*
'212

 ∫∫ v 2120121      (29) = drdR

fo (20), the vibrational wavefunctions are written with 
the additional quan
as was shown in Chapter 1, the electronic 

  if  
2

20
*
1

2

10
*

'2 ∫∫ = dRdR vv χχχχ2
21

2
12 μμ =    (30) 

which is satisfied if 2010 χχ = and '21 vv χχ = . This is the condition for observation of 
mirror symmetry between absorption and fluorescence spectra.  

This phenomenon of mirror symmetry can be observed experimentally for many 
systems. An example is shown in Figure 14. The differ
lowest energy absorption and highest energy fluorescence bands, called Stokes shift, is 

r related he reorga

e 14 

0

radiating with a strong short laser pulse. The fluorescence intensity IF will be 
proportional to the concentration [M*] at any given time. We can now write a rate 

ence between the maxima of the 

an important paramete  to t nization energy of the molecule. 

 

absorption fluorescence

Stokes shift
diethyloxacarbocyanine
iodide 

 

 

 

 

Figur

 

2.10. Fluorescence lifetime 

Let us consider a number of molecules M in their excited states; we can express 
their concentration at time t = 0 as [M*] . Such excited state can be prepared by 
ir
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equation 

 [ ] [ ]** Mk
dt
Md

F−=       (31) 

with the solution  

 [ ] [ ] )/exp(** 0 FtMM τ−=  or )/exp()0()( FFF tItI τ−=   (32) 

where FF k/1=τ  is fluores
radiative lifetime τR defined in Chapter 1 as 

cence lifetime. Fluorescence lifetime is related to the 

NRRF τττ
111

+=        (33) 

NR k/1=where Rτ N  are lifetime and rate of non-radiative processes competing with 
fluorescence. It follows that fluorescence quantum efficiency  

 
Rτ
F

NRR

R
F kk

k τφ
+

=

s. (32)-(34
na may include not only 

ermal relaxation of higher 
 the same electronic state (~10-12 s), and intersystem crossing  

1 – T1. While the former two processes contribute to the population of the emitting 0 
the latter process is one of the causes of fluorescence 

quenching.   

IC

=       (34) 

The Eq ) describe generally the effect of non-radiative processes on the 
relaxation of the excited state. The non-radiative phenome
intramolecular processes but also itermolecular interactions. 

 

2.11. Radiationless transitions 

The most commonly encountered radiationless transitions are singlet-singlet 
internal conversion Sn – S1 (on timescales of ~10-11 s), th
vibrational states within
S
vibrational level of the S1 state, 

Apart from intersystem crossing S1 – T1, fluorescence can be internally (intra- 
molecularly) quenched by S1 – Tn intersystem crossing and S1 – S0 internal conversion. 
The general internal quenching rate kNR introduced in the previous section is thus 
composed of the intersystem crossing rate kISC (of both S1 – T1 and S1 – Tn) and internal 
conversion rate k :  

ICISCNR kkk +=      (35) 
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It has been found experimentally that kNR is temperature dependent as  

)/exp(0 kTEkkk NRNRNRNR −′+=    (36) 

where kNR
0 is independent of tempera

described by an activation energy ENR. In most aromatic molecules the kIC does not 
an kT, and the 

temperature dependence of kNR can be attributed to thermally activated S1 – Tn 
intersystem crossing. For benzene and its derivatives,  t
proceeds via an isomeric state and is the main contribution to the temperature dependent 

ture and the temperature-dependent part is 

depend on temperature because the S1 – S0 gap is much larger th

on he other hand, the S1 – S0 

part of kNR.  
Theoretical treatment of internal conversion has to go beyond the 

Born-Oppenheimer approximation. The electronic wavefunctions ul ψψ , (where the 
subscripts l, u stand for lower and upper) are thus no longer independent of nuclear 
coordinates. In organic molecules, the high density of vibrational states merges into a 
continuum of states, and we may drop the vibrational quantum numbers for the 
vibrational w ul χχ , .avefunctions  The matrix elem  
conve

ible except for cases when 

ent responsible for the internal
rsion becomes 

  dREJEEH uuuNllllu )0()()()( ** χψχψ∫=    (37) 

where El, Eu are electronic state energy levels in zero-vibrational states, E is the 
vibrational energy of the upper state and JN is nuclear kinetic energy operator. The 
matrix element is neglig EEE lu ≅− . The rate constant for 
the non-radiative transition by internal conversion can

  

 be then written as 

)(
2

** EdRdRJk uluNlNR ρχχψψ ∫∫=    (38) 

The differen
 kinetic energy 

for radiationless transition. In contrast to absorption or emission, radiationless transition 
o-energetic vibrational states of d

energy scheme can be represented by a horizontal arrow, as shown in Figure 15. 

where ρ(E) is density of vibrational states of the lower electronic state. Eq. (38) is 
formally similar to Fermi’s golden rule and Eq. (20). ce is in the interaction 
Hamiltonian, which is electric dipole for electronic transition and nuclear

occurs between is ifferent electronic states, and in an 
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2.12. Phosphorescence   

Although phosphorescence refers generally to radiative processes between states 
 different spin multiplicity, these are in most cases radiative T1 – S0 transitions. Since 

1 – S0 transition is electric dipole forbidden, phosphorescence is usually very weak 
e that can be observed only when other competing 

nonradiative processes are suppressed. This

          

Ψu

Internuclear distance

①

②

③

④

②

① absorption
② thermal relaxation
③ internal conversion
④ fluorescence

Ψl

y
E

ne
rg

F

of
the T
process with long lifetim

 usually means cooling the sample to 
cryogenic temperatures to suppress the thermally activated radiationless transitions. 

Compared to fluorescence, the quantum characterization of the transition 
efficiency is more complicated. One possibility is to define phosphorescence quantum 
efficiency φP as 

  ATPP nn /=φ        (39) 

where nP is the number of photons emitted as phosphorescence and nAT  is the number 
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of photons absorbed by the molecule that led to the population of the triplet state. 
Another possibility is to defi
phosphorescence photons nP divided by the total num A

  ωωφ       (41) 

To discuss the transient behavior, let us consider pulsed light excitation that produces 
c 1

subsequent processes can be written as 

ne phosphorescence quantum yield ΦP as the number of 
ber of absorbed photons n :   

  APP nn /=Φ       (40) 

Phosphorescence spectrum P(ω) is defined as relative phosphorescence quantum 
efficiency at frequency ω 

∫
0

)( dPP

∞

=

oncentration of singlet excited states [ M*]0 at time t = 0. The rate equations of the 

[ ]  [ ]** 1Mk
dt
Md

F−=      (42) 

  

1

[ ] [ ]** 1
3

MkMd
−= [ ]*3Mk

dt PISC     (43) 

 in Eq. (43) refers 
condition [3M*]0 = 0, Eqs. (42) and (43) can be solved to obtain 

  

where the superscript 3 to the triplet state. Applying the initial 

[ ] [ ]
( ) { })exp()exp(** 0

1
3 tktk

kk
MkM FP

PF

Upon usual conditions, k

ISC −−−
−

=   (44) 

F >> kP and (34) simplifies to 

[ ] [ ]
( ) [ ] exp(*)exp(** 0

30
1

3 Mtk
k
MkM P
F

ISC =−= )tkP−  

  or  )exp()0()( tkItI PPP −=         (45) 

in terms of phosphorescence intensity IP. The phosphorescence lifetime or triplet 
lifetime is given by 

  PP k/1=τ        (

ectra are shifted to lower energies from fluorescence and S0 – S1 

46) 

The actual values of phosphorescent lifetimes vary from miliseconds to tens of seconds. 
Phosphorescence sp
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absorption bands. examples of phosphorescence spectra of simple aromatic  A few 

  

e 16 
(reprinted from [5])               

 level even though the T  
– S0 transition is spin-forbidden is due to the spin-orbital interactions between the 
singlet and triplet wavefunctions. The strength of this interaction increases with 

n

etals. In such system, the quantum yield of 
 on the ord r of 

molecules are shown in Figure 16. 

 

 

Figur

 

The fact that it is possible to observe phosphorescence from T1 1

 
increasing atomic number Z. Aromatic molecules contain o ly light atoms and their 
multiplicity forbiddenness factor fF 
(defined as ratio of the allowed to 
forbidden transition intensities) is on 
the order of 108. The spin-orbital 
interaction can be increased by 
substitution of atoms with higher Z, a 
phenomenon called internal heavy 
atom effect. Another method of 
increasing the spin-orbital coupling 
and the fF factor is using heavier 
atom substitutes in the solvent 
molecules. Such effect is known as 
external heavy atom effect. The 
external heavy atom effect in S0 – T1 
absorption is shown in Figure 17. 
Another example of heavy atom 
induced increase of phosphorescence 
emission are metal-to-ligand charge                
transfer states of organometallic com- 
plexes containing Ru, Ir, Pt and other m
phosphorescence may reach more than 0.5 and the lifetime is e
microseconds. 

Figure 17 (reprinted from [5]) 
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3. Molecular complexes 

In this chapter, we will be interested in photophysical effects arising from 
intermolecular interactions. By complexes are meant weakly bound numbers of 
identical or different molecules N in well-defined geometrical arrangements. The 
number N can range from 2 for molecular dimers to ~ 1000 for molecular aggregates or 
conjugated polymers. Molecular complexes can be widely divided into ground-state 
complexes which are formed in the molecular ground states and keep their arrangement 
regardless of the presence of light, and excited-state complexes which are formed only 
after the absorption of light by one of the constituent molecules.  

 

3.1. Ground-state complexes: general considerations 

Ground-state complexes are held together by weak intermolecular forces (van der 
Waals interactions, hydrogen bonds). In such systems, the intermolecular electron 
orbital overlap and electron exchange are negligible. Electrons responsible for optical 
transitions are localized on the constituent molecules, and the molecular units of the 
system retain their individual characteristics. The theoretical treatment of the electronic 
states of the complexes can thus proceed in terms of the electronic states of individual 
isolated molecules. 

 It should be noted that that the theory presented here treats the photophysical 
properties of the complexes, that is changes in electronic wavefunctions and energies 
that occur upon absorption of light. The theory does not deal explicitly with the origin 
of the attractive interactions in the ground states, but may add them as parameters. As a 
result, the theory can be also applied to electronic transitions in conjugated polymers, in 
which the monomer units are joined together by strong covalence bonds, but in which, 
from the point-of-view of interactions with light, each conjugated segment can be 
treated as an isolated molecule only weakly interacting with its neighbors.  

 

3.2. Molecular dimer 

Theoretical treatment of the wavefunctions and energies of a molecular dimer can 
be based on the Born-Oppenheimer approximation. The justification for the use of this 
approximation will be given later. As a result, the effect of molecular vibrations appears 
in the form of Franck-Condon factors that modify the matrix elements of electronic 
transitions. We can, therefore, proceed with the theory of electronic states separated 
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from the vibrational states. 
The treatment of the dimer will be eventually extended to aggregates of larger 

numbers of molecules. The notation used in this Chapter will be therefore different 
from the one used in the Chapter 1 and the same symbols will have different meanings 
in the two Chapters. We will consider only two electronic levels of the constituent 
monomer molecules. Their ground state wavefunctions will be 21,ψψ , where the 
numerical subscripts refer to the different molecules no. 1 and 2. The wavefunctions of 
their excited states will be written with the superscript u (upper) as uu

21 ,ψψ . The ground 
state wavefunction of the dimer is a product of the monomer wavefunctions 

  21ψψ=Ψ      (1G ) 

ilar consideration leads to two possible non-stationary excited states either with 

 

Sim
molecule 1 or molecule 2 excited 

 21ψψ u   or   u
21ψψ      (2) 

Since the two molecules are indistinguishable, the excited state wavefunctions has to be 
written as linear combinations of (2) 

  uu
E ba 2121 ψψψψ +=Ψ     (3)  

with the coefficients a, b to be determined later. The Hamiltonian operator of the dimer 
is 

  1221 VHHH ++=     (4) 

where H1 and H2 are Hamiltonians for the isolated monomers and V12 is an operator for 
the intermolecular interaction. Using the Hamiltonian (4) in the time-independent 
Schrödinger equation for the dimer ground state  

  GGG EH Ψ=Ψ      (5) 

we obtain for the dimer ground state energy 

GG HE = DEEdrdrVEEdrdr ++=++= ∫∫ 21212112212121 ψψψψ     (6) ∫∫ 2121 ψψψψ

where we have, for simplicity, omitted the notation for complex conjugation. The terms 
E1 and E2 are ground state energies of the isolated monomer and DG is energy 
correction due to van der Waals interaction in the ground state, lowering the EG. Writing 
the Schrödinger equation for the states (3) we obtain 
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EEE EH Ψ=Ψ  or ( ) ( )uuuu
21212121 ψψψψψψψψ +=+          (7) E baEbaH

Multiplying (7) from left alternately by 21ψψ u and u
21ψψ  and integrating each time 

over coordinates of both molecules leads to a system of two equations 

 EaEbHaH =+ 1211  

 EbEbHaH =+ 2221       (8) 

where we have denoted 

 121 H uu ψψψ  

 the 

∫∫= 21211 drdrH ψ      (9)

 ∫∫= 1212112 drdrHH uu ψψψψ      (10) 2

It follows from the symmetry of problem that 2211 HH = and 2112 HH = . Requiring 
that the determinant of (8) be zero 

0
11

 
12H

11) 1211 =
− E

E

EH
      (

H+   and  

− HEH

gives two excited energy states in the form of 

 11HEE =′ 1211 HH12 EE −=′′     (12) 

and two corresponding wavefunctions,  

 ( )uu
E 212121 ψψψψ +=Ψ′   and  ( )uu

E 21 ψψψψ −=Ψ ′′   (13) 2121

2) using the HEvaluating Eqs. (1 amiltonian (4) we obtain 

∫∫∫∫ +++=′ drdrVEEE uuu ψψψψ 212112212121122121 drdrV uu
E ψψψψ   

 ∫∫∫∫ −++=′′ 212112212121122121 drdrVdrdrVEEE uuuuu
E ψψψψψψψψ   

 molecule 1 to molecule 2. 

(14) 

The first integral on the right side of the equations (14) represents the van der Waals 
interaction between an excited state molecule 1 and ground state molecule 2. The last 
term in both equations is called exciton displacement or exciton splitting term. It 
describes the transition of, or exchange of, excitation from
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Using convenient ls, the equations (14) can be rewritten as 

E 21 15) 

e have seen thus so far, raction between two molecules brings about 
wering of their combine

lowering and splitting 
of their excited state 

interaction with light. 
The result is 

in Figure 18. 

Figure 18 

 terms of the optical transition 
write 

symbo

  ε+++=′ E
u

E DEEE 21  

  ε−++=′′ u DEEE      (E

W  that the inte
lo d ground state energy by van der Waals interaction, and 

energy due to 

schematically shown 

 

In energies between the excited and ground states we can 

 ε±Δ+Δ=Δ=− DEEEE monomerGE     (16) 

To proceed furthe w have to sp
, this operator includes Coulomb interaction 

s of the interacting molecules. Using such 
, the relevant terms cannot be easily evaluated. Instead, the operator is usually 

ultipoles, onopole-dipole, 
ns. For neutral molecules 
wed optical transitions the 

ipole-dipole interaction is the dominating term. In a coordinate system where the 
transition is oriented along axis x and z is taken as the intermolecular axis, the operator 
as the form 

r, we no ecify the form of the van der Waals 
interaction Hamiltonian V12. Generally
between all electrons and nuclear particle
operator
expanded into a series of m containing monopole-monopole, m
dipole-dipole, quadrupole-quadrupole, and higher interactio
the interactions involving monopoles are zero, and for allo
d

h

   ∑=
jir ,

213
120

12 4πε
      (17) 

where each molecule is treated as an electric dipole, r

ji xxeV
2

12 is the intermolecular distance 
and x1

i are the coordinates of electron i of molecule 1. The geometry of the above 

E1 E2 DG

E1
u E2

u
DE

EG

EE’

EE’’

ε

ε

( )uuΨ′E 212121 ψψψψ +=

( )uu
E 212121 ψψψψ −=Ψ ′′

21ψψ=ΨG

u
2ψ

2ψ1ψ

u
1ψ

MONOMER DIMER
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operator corresponds to the parallel (also face-to-face or card-pack) type of dimer 
molecule. The structure is schematically 
shown in Figure 19.  

 
displacement term ε.  

 

Figure 19 

evaluate the exciton 

 

 

Using the potential (17) we may now attempt to

y

z

∫ ∑ ⎟
⎞

drex j ψ  (∫ ∑∫∫ ⎟
⎠

⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
== 222211113

120
21211221 4

1 drex
r

drdrV u

i

iuuu ψψψ
πε

ψψψψε 18) 

In the integrals in Eq. (18) we may recognize the transition dipole moments of 

 

j

individual monomer molecules (as introduced in Chapter 1, Eq. (25)). Using μ1, μ2 for 
the transition dipole moments of molecules 1 and 2, we may write 

 3
120

21

4 rπε
μμε =          (19) 

for the case of an interaction of identical molecules. While both transition moments are 
oriented along the x-axis, their direction may be chosen arbitrarily. To confirm with the 
Fig. 14 (i.e. to ensure that EΨ′  is the wavefunction with lower energy) we set  

  21 μμ −=       (20) 

The reason for this choice will be obvious later. 

 

3.3. Selection rules for optical transitions in molecular dimers 

Although theoretically there are two distinct excited states in a dimer molecule 
(predicted from Eq. (15)), both of them may
transition. It is possible to derive a set of simple geometry-based selection rules which 

 not necessarily take part in an optical 

will enable one to determine which dipole transition is allowed by examining the 
structure of the dipole molecule.  

r12

x

molecule 1

molecule 2
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For the example of the parallel dimer discussed above, we may try to evaluate 
pole operator of the dimer molecule. The 
 excited states are 

matrix elements of the total electric di
transition dipoles corresponding to the two

  rdrEG Ψ′+Ψ=′ ∫∫ μμΜ      

and      (21) 

where 

( ) 2121 ˆˆ d

( ) 2121 ˆˆ drdrEG Ψ ′′+Ψ=′′ ∫∫ μμΜ

21 ˆ,ˆ μμ  are dipole moment operators of the monomers. Using the expressions 
(1) and (13) in Eq. (21) we obtain 

( )2122221111 21ˆ21ˆ2  1Μ =′ μμ +=+ ∫∫ drdr uu ψμψψμψ    (22) 

and, similarly,  

( )2121 μμΜ −=′′      (23) 

thus obtaining a simple relationship between the transition dipole moment of the dimer 
and those of the constituent monomers. For the optical transition to a particular excited 

r to occu
non-zero. We have seen that for the parallel dipole 
state of the dime r, the corresponding transition dipole moment must be 

21 μμ −= , which gives  

  0=′Μ    and   
2

2 1μΜ =′′     (24) 

Referring to Fig. 14, the absorption to the upper state EΨ ′′  is dipole allowed while that 

EΨ′  to the lower state is d
be extended also to the prediction of 

ries based on the consideration of the 
nergy of two interacting classical electric dipoles. For a parallel dimer, the energy of 

erial (or head-to-tail) 
dim

strated in Figure 20. 

ipole forbidden. 
 The above simple vector treatment can 
the relative energies of different dimer geomet
e
two dipoles pointing in opposite directions is, due to Coulomb interaction, lower than 
that of dipoles pointing in the same direction. In contrast, in the s

er, the situation is reversed. The arrangement with both dipoles pointing in the same 
direction has lower energy and the transition is dipole allowed. Thus, based on the 
knowledge of the geometry of the system, one is able to use vector addition and 
classical electrostatics to predict the phases of excited state wavefunctions and 
probability of the transition, as illu
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Figure 20 

 

3.4. Molecular aggregates 

The theoretical approach developed above for the molecular dimer can be easily 
extended to the concept of infinite 1
Because of the chain infinite length, the lack of boundary conditions makes the model 

of the gro unctions of 
individual molecules 

 nNG 321 ..... ψψψψψ       (25) 

-dimensional linear chain, or molecular aggregate. 

applicable for very long chains. For aggregates of intermediate length (3 – 10 
molecules) the results are not well applicable. 

We will assume a linear chain composed of N identical molecules (where N is very 
large). The ground state wavefunction is a product und state wavef

∏
=

==Ψ
N

n 1

The excited state can be written as 

 ∏
≠
=

==Φ
N

an
n

n
u
aN

u
aa

1
321 .......... ψψψψψψψ      (26) 

This is an excited state of the aggregate where the monomer molecule a is excited and 
other molecules are in their ground states. There are N such products and they represent 
non-stationary excited states. Generally, we may write the total excited state as a linear 
combination of the states expressed by (26) 

 ∑
=

  (27) Φ=Ψ
N

a
aak

k
E C

1
     

G E

E ’E

EE’’

E

E ’E

EE’’

PARALLEL HEAD-TO-TAIL OBLIQUE

G G
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where the coefficient k describes the kth exciton state (notation used instead of the ‘,
“ notation for the dimer). Assuming an infinite chain, the magnitude of the coefficients 

ak will be same for all a (no boundary effects) and the coefficients will differ only in 
their phases. This fact can be expressed as  

 

C

 ∑
=

Φ=Ψ
N

a
a

k
E Nika

N 1

)/2exp(1 π      (28) 

where k = 0,±1,±2, ….. N/2.  

 

3.5. The concept of molecular exciton 

The Eq. (28) describing the molecular aggregate excited state is a linear 
s of individual monomer molecules represented with equal 

weig

iton is also called Frenkel exciton. The 
prin

ers to the excitation that is spread over N molecules. The 
delocalization length (or, equivalently the number N) is called coherent length of the 
exciton.  

Following the procedure used to determine the excited state energies of the dimer, 
ns (25) and (27) to calculate the excited energies of 

the aggregate. The van der Waals interaction potential is again approximated by 
ipole-dipole interaction, and as further simp

take place only between nearest neighbors. The exciton displacement term of the 
interaction potential is then expressed as  

f the excitation from state with molecule a 
excited to state with molecule a+1 excited, that is transfer of excited energy between 
eighboring molecules. 

combination of excited state
hts. The effect of the linear combination is that the wavefunction is a wavefunction 

of a collective excitation of N molecules in the chain. The excitation is delocalized over 
N monomer molecules and possesses well-defined phases for each monomer. This type 
of excitation is called molecular exciton. To distinguish it from the concept of Wanier 
excitons used in solid state physics, this exc

ciple difference from Wanier exciton is that in Frenkel exciton the electrons of the 
excited states are localized on individual monomer molecules. The delocalization 
mentioned above ref

it is possible to use the wavefunctio

d lification, the interaction is considered to 

 ∫ +++ ΦΦ= drV aaaaaa 11,1,ε        (29) 

which describes the transfer (displacement) o

n The exciton state energies are given by  
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+= aaaE
k
E N

k
N

NEE επ     (30) 

where EE,a is the excited state energy of the molecule a, and k = 0,±1,±2, ….. N/2. 
The actual form of the dipole-dipole interaction term depends on the geometry of the 

roblem. For a linear chain with transla
α from the chain axis (Figure 21), 

 
 
Figure 21 
 
 

p tion-equivalent components inclined at an angle 

 
 

the expression (30) can be written in terms of the monomer transition dipole moment μ 
as   

α
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μπ 2

3
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2

, cos31
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NEE aE
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The equations (30), (31) represent exciton dispersion relations, that is, dependence of 
the exciton energy on k. The exciton energy levels calculated from Eq. (31) for a few 

values of α 
are shown in H-aggregate J-aggregate

Figure 22 

 

 

 

 

 

  Figure 22 
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k

EE
k

monomer
level

exciton
bandwidth

90° 54.7° 0°α

 44 



T rd-pack arrangement of molecules, often he case for α = 90 corresponds to the ca
called H-type aggregate. The case of α = 0 is the head-to tail configuration, also called 

gy levels in Fig. 22 is called exciton band structure. 
exciton bandwidth is 

 

J-type aggregate. The Fig. 22 also shows that the same selection rules that were derived 
for the dimer can be used for the aggregates. Thus, for H-aggregates the transition to 
the lowest exciton level is forbidden and for J-aggregates this transition is allowed. All 
intermediate transitions for these two extreme cases are forbidden.  

The spread of the exciton ener
For an N-component aggregate there are N energy levels. The 
twice the energy shift component in Eqs. (30) or (31); generally, this has a form 

1,
2cos14 +⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −

= aaN
k

N
Nbandwidth επ     (32) 

The exciton bandwidth of a linear infinite chain is twice the bandwidth for the dimer of 
h

erations would show that the longer-range 
interactions cannot be neglected. Inclusion of 8 neighbors on e
of aggregate vs. dimer exciton bandwidth to 2.39.  

exciton band structure and corresponding selection rules. In absorption, the spectra of 
H-type dimers and aggregates are shifted to higher energies (blue shift), th e 
dimers and aggregates to lower energies (red shift). The Kasha’s rule stipulates that 
population of the highest (allowed) exciton level of H-type dimers (aggregates) will 
quickly non-radiatively relax to the lowest exciton level from where the dipole 
transition to the ground state is forbidden. The population is thus efficiently transferred 
to a lower-lying triplet state from where efficient phosphorescence has been observed.  

Many cyanine molecules are known to form very large aggregates. Although the 
total number of molecules in the aggregate does not correspond to the exciton coherent 
length N (due to the presence of deformations and defects along the chain), the values 
of N are still very large (estimates vary between 50 and ~ 1000). Structur , these are 
predominantly J-aggregates. The large coherence length gives r  
characteristic spectral features: sharp red-shifted absorption and luminescence band 
without vibrational structure, and very short fluorescence lifetime. An example of 

corresponding structure. This is a result of the nearest-neighbor approximation. Eac  
molecule in a linear chain has two neighbors, and compared to dimer undergoes 2 
dipole-dipole interactions. More exact consid

ach side brings the factor 

 

3.6. Spectral properties of molecular aggregates 

ined by their 

ose of J-typ

Spectral properties of molecular dimers and aggregates are determ

ally
ise to some
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J-aggregate absorption 
spectra is shown in Figure 23. 
Lack of the vibrational 
structure is due to the large 
delocalization of the 
excitation. As a result, the 

 in the 
Figure 23                  case of monomer, and the 

observed exciton band is a purely electronic 
band is a phenomenon called motional narrowing. It is caused by the disorder in 

650600550500450400
Wavelength [nm]

monomer
J-aggregate

A
bs

or
pt

io
n

relative change of nuclear 
configuration upon excitation 
is much smaller  than

0-0 transition. Further narrowing of the 

transition frequencies of individual monomers being averaged by the delocalized 
exciton. The absorption band is narrowed by a factor of N/1 , where N is the exciton 
coherence length. Shortening of the excited state lifetime is called superradiance. 
Excited state radiative lifetime τR of the monomer is shortened by a factor of 1/N in an 
aggregate of the coherent length N. 
 

3.7. Excited state dimer: excimer 

re are examples of molecules that Apart from ground state dimers and aggregates, the
experience the attractive van der Waals 
interactions only in their excited states. 
Such systems are called excited state 
complexes, and in case of dimers, 
excited state dimers, or excimers. 
Schematic potential energy diagram of 
two parallel molecules as a function of 
their intermolecular separation r is 
shown in Figure 24. Here, R represents 
the repulsive potential in the ground and 
excited states, V is the attractive 
potential in the excited state, D is the 
resulting excimer potential energy.  

Figure 24 
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If the excimer energy 

VRD +=     (33) 

is lower than the monomer excited state energy at some
state can be formed.  

In the treatment of ground-state dimers we have
repulsive potentials in the ground and excited states were
attractive interactions. Making the same assumption here
procedure outlined in Section 3.2. for the dipole-dipo  
difference will be th

 value of r, a bound excimer 

 explicitly assumed that the 
 same and dealt only with the 
, we can basically follow the 
le interaction V12. The main

e absence of the term DΔ  in the Eq. (16) for the dimer transition 
energy. We can thus write  

  3
0

2

4 r
EEEE monomermonomerGE πε

με +Δ=+Δ=−   (34) 

where μ is again the transition dipole moment of the monomer. Spectroscopically, 
excimers are characterized by absorption spectra that are identical to absorption spectra 

of monomers, and by fluorescence spectra that are shifted by the amount . 

ple of fluorescence spectra of typical excimer system, the molecule of pyrene 
ns (from G to A), is shown in Figure 25. 

accom
molecular g
 
  
 
 
 
 
Figur

Fluor

conce ). 

 

 

3
0

2 4/ rπεμ

An exam
in solution at increasing concentratio

The solution of pyrene represents an example of inter-molecular excimer. When 
the two monomers are attached to each other by a chemical bond (alkane chain) the 

lar excimer state, which is usually 
panied by a large change in the 

eometry.  

e 25 (reprinted from [5]) 

escence spectra of pyrene in cyclohexane at 

ntration between 10

resulting molecule can form an intra-molecu

-2 M (A) and 10-4 M (G
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3.8. Charge transfer complexes 

In a mixed solution of electron acceptor molecules (from now on denoted as A) 

wavefunction of the com
 and charged state D+A- wavefunctions as 

      (35) 

and electron donor molecules (D) one can observe the appearance of a new absorption 
band due to a charge-transfer (CT) state. The pairs of donor and acceptor molecules are 
accordingly called charge transfer complexes or, alternatively, donor-acceptor (DA) 
complexes.  

We may characterize the photophysical properties of the CT complexes without 
going into the details of the mechanism of the charge transfer itself. Let us denote DA a 
neutral donor-acceptor pair, and D+A- a pair in which an electron has been transferred 
from D to A. We can write ground state plex as a linear 
combination of the neutral DA

)()(),( 10
−+Ψ+Ψ=Ψ ADbDAaADG

For the excited state wavefunction we can write 

  )(*)(*),( −+    (36) 

The relative magnitudes of the coefficients a, b, a*, b* characterize the strength of the 
CT com

01 DAbADaADE Ψ+Ψ=Ψ

plexes. For a weak complex 1* ≅≅ aa  and 0* ≅≅ bb . The optical transition 
then goes mainly from the neutral state DA to the charge transfer state D+A- and is 
called charge transfer transition. For quantitative determination of the character of 
ground state the ratio  

  22

2

ba
b
+

=λ      (

is often used. Complete charge transfer ground state is characterized by λ = 1, neutral 
ground state by λ = 0. Without elaborating on the theory of the CT complexes we can 
write the result for the energy of optical transition as  

 

37) 

( ) ( )
01

2
001

2
101

01 EE
SEESEEEEECT −

−+−
+−=    (38) 

where the matrix element symbols E0, E
Hamiltonian H as 

1, E01 and S are defined using a complete 
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∫ 000 ,  ∫ 111 , ∫ ΨΨ= drHE 0101  and ∫ ΨΨ= drS 01ΨΨ= drHE ΨΨ= drHE     (39) 

Alternatively, in terms of macroscopic observables, the transition energy can be 
expressed as 

  Δ−−= ADCT AIE     (40) 

where ID is the ionization potential of D, AA is the electron affinity of A, and Δ is the 
differ

wn in Fig. 26.  
Similar to excimers, CT 

co
into inter-molecular complexes (such 
as the one in Figure 26) and 
intra-molecular complexes, where 
the c

The term exciplex is often used to describe an excited state aggregate of two different 
 of 

excimers, the molecules do not 

mer is bound in its excited state 
by exciton (dipole-dipole) 
i on to 
the interaction ener lex 
comes from a charge transfer 

Figure 27 (reprinted from [12])             

ence in the formation energies of the DA complex in excited and ground states 
(Coulomb interaction between the negative and positive ions). An example of 

absorption spectrum of a CT 
complex of dimethylnaphthalene 
with p-chloranil is sho

mplexes can be further divided 

harge transfer occurs between 
different D and A parts of the same 

Figure 26 (reprinted from [5])                   molecule. 
 
 
3.9. Exciplex 

molecules. As in the case

interact in their ground states. The 
principle difference is that while the 
exci

nteraction, the main contributi
gy of an excip

character of the excited state.  
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The situation is schematically sh n in Figure 27 ould be no e 
explanation of the excimer interaction in section 3.7. was simplified in the sense that the 

21 DbAD Ψ+−+

fluorescence spectrum of the monomer perylene (dotted
CT complexes, exciplexes can be formed either as inter
complexes.  

ow . It sh ted that th

excited state interaction also includes a small charge transfer contribution. Generally, 
the excited state wavefunction for excimers and exciplexes should be thus written as 

 )()() *
4

*
3 DAdADcAaE Ψ+Ψ+Ψ=Ψ +−   (41) ()(

where for excimers A = D, a = -b and c = -d, with |a|2 << |c|2.  
An example of exciplex emission from the complex of perylene with 

dimethylaniline is shown in Figure 28. The figure shows, for comparison, also the 
). As in the case of excimers and 

-molecular or intra-molecular 

 
 

 

 

    Figure 28 (reprinted from [12]) 
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4. Intermolecular photophysical processes 

In the previous Chapter we were interested in weakly-bound systems that interacted 
strongly via dipole-dipole interaction. The result was a coherent excitation delocalized 
over the system and large shift of the system energy levels. In this Chapter we will treat 
photophysical processes on pairs of molecules that interact  
molecule of the pair can be considered as an isolated entity. W  

olecule, a donor, 

lest case of energy transfer is the one in which the donor emits a photon, 
the energy transfers space as light, and is absorbed by an acceptor (Figure 29). Light 
intensity decreases with distance from the source as r-2 (inverse square law) and the 
radiative energy transfer efficiency follows the same donor-acceptor distance 
dependence. The probability that a photon emitted by the donor will be absorbed by the 
acceptor can be expressed as 

 

weakly, so that each
e will be interested in

processes of energy transfer, in which light energy absorbed on one m
is transferred to another molecule, an acceptor.  

 

4.1. Radiative (trivial) energy transfer  

The simp

∫∝ ωωεω
φ

dFAp AD
FD

DA )()(][303.2      (

where [A] is the acceptor concentration, φFD the donor fluorescence quantum efficiency, 
FD(ω) the donor fluorescence and εA(ω) the acceptor absorption spectra.  

At small distances (< ~10 nm) the radiative contribution to energy transfer is 
negligible compared to the resonant mechanism discussed in the following paragraph. 
However, radiative transfer can be a dominant mechanism of energy transfer in dilute 
solutions, where it can influence fluorescence spectra and lifetimes.  

Figure 29 
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4.2. Förster resonant energy transfer (FRET) 

Resonant energy transfer occurs between two molecules via dipole-dipole 
interaction. The only condition for this process to occur is that the donor and acceptor 
posses strong transition dipole moments. Due to the spin selection rule this condition 
usually implies energy transfer between donor singlet and acceptor singlet states. 
However, as we have seen in Chapter 2, there are cases where the heavy-atom effect can 
partially lift the spin selection rule and triplet-singlet transitions (such as 
phosphorescence) can posses significant transition dipole moment. Again, since the 
strength of the dipole moment is the only relevant parameter governing the resonant 
ener echanism, transfer of energy, e.g., between donor triplet and acceptor 

gy transfer is schematically 
depicted in Figure 30. 

igure 30 
 

y transfer rate. 
In de

gy transfer m
singlet states can be an efficient process. The resonant ener

 

F

Resonant energy transfer via dipole-dipole interaction is also being called Förster 
energy transfer after T. Förster who first derived the equation for the energ

riving the equation, we can begin with a general form of the Fermi’s golden rule 
for the transition rate between two quantum states. 

( )ADDADA H ωωδπ
−=Γ 2

22h
     (2) 

u

Here, the subscripts D and A refer to the donor and acceptor molecules, respectively, ωD 
and ωA are the transition frequencies, ΓDA is the energy transfer rate constant, and |HAD| 
is the matrix element of the interaction Hamiltonian. Defining the wavefunctions of the 
initial i and final f states of the pair of molecules as 

 A
u
Di ψψ=Ψ  u

ADf ψψ=Ψ      (3) 

where ADψψ  is a state with donor excited and acceptor in ground state and u
ADψψ  is a 

e

g

donor*

g

e

acceptor

e

g

donor

g

e

acceptor*
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state with donor in the ground state and acceptor excited. Since the dipole-dipole energy 
transfer takes place uni-directionally over relatively long distances we do not have to 
take linear combinations of A

u
Dψψ  and u

ADψψ  into account. The matrix element of the 
interaction Hamiltonian can be then written as 

 drVdrVH A
u
DDA

u
ADiDAfDA ∫ ∫=ΨΨ= ψψψψ     (4) 

The interaction energy operator VDA is due to dipole-dipole interaction between 
transition dipoles μD and μA, or in other words, due to the potential energy of dipole 
μ

 
A in the electric field of the dipole μD. From classical electromagnetic theory, the 

electric field of μD can be written as  

 3
04 r
DμE =  D πε

      (5) 

where ε0 is permittivity of The interaction energy VDA is thus 

 

 vacuum. 

3
04 r

V AD
ADDA πε

μμμE ⋅
=⋅=       (6) 

or for simplicity 

 3rDAV ADκμ μ
∝        (7) 

 

where r is now distance between the D and A molecules and κ is an orientational factor. 
With the angles θD, θA and θT defined by Figure 31, the orientational factor can be 
expressed as  

ADT θθθκ coscos3cos −=  

Depending on the orientation of κ can assume values between 4 

 

   

    (8) 

 the dipoles the factor 
for parallel orientation and 0 for perpendicular orientation, as shown also in Fig. 28. 

 

  θT

θD
μD

μAr
θA

 53 κ = 4 κ = 1 κ = 0



Figure 31 

 

 

U action Hamiltonian as sing now the Eq. (7) in (4) we can write the inter

 dr
r

H ADADADDA ∫∝ ψμμψψ uu ψκ )(3     (9) 

and the energy transfer rate as  

 ( )ADA
uu ψμμψψκ

∝Γ ∫
2

)( DADADDA dr
r

ωωδψ −
2

6    (10) 

Due to the relatively large distance between D and A the coordinates can be considered 
independent and the integrand in Eq. (10) can be separated as 

( )ADAAAA dr ωωδψμψ −∫    (11) u
D

u
DDDDA dr

r
ψμψκ

∝Γ ∫
22

6

2

ment of the transition dipole moments of the donor and acceptor 

 

Denoting the matrix ele
molecules as  

∫= D ∫= u drψμψμ    (12) u drψ   and   DDDD μψμ AAAAA

and using the following property of the delta-function 

( ) ( ) ( ) ωδωωδωωδ DAD −=− ∫
∞

0

ωω dA−     (13)  

we can re-write the Eq. (11) for the transfer rate as 

( ) ( ) ωωωδμωωδμκ d
r AADDDA −−∝Γ ∫

∞
2

0

2
6

2

    (14) 

The equation (14) already shows the well-known dependence of the transfer rate on the 
6th power of distance r. We can further manipulate the equation using the relations 
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 ( ) ε ω
ω

ω )(A
AA ∝       (15) 

 

ωδμ 2 −

which is a consequence of the Eq. (25) of Chapter 2, and 

3
12

12
2

ω
μ ABD ∝∝        (16) 

here B12 and A12 are the Einstein’s coeff
Chapter 1. Further, 

 

w icients, as defined in Eqs. (38) and (43) of 

F

F

R

A
τ
φ

τ
==12         (17) 

as seen from Eq. (42) of Chapter 1 and Eq. (34) of Chapter 2. Combining the 

1

fluorescence quantum efficiency φF  with the lineshape, as approximated by the delta 
function δ(ωD−ω), leads to the fluorescence spectrum 

)()( ωωωδφ DDF F=−       (

Using the expressions (15-18) in the Eq. (14) we obtain for the energy transfer rate 

18) 

ωωωωε
τ

κ dF
r DA

F
DA ∫

∞
− ∝Γ

0

4
6

2

)()(      (19) 

It is further customary to use a normalized fluorescence spectrum  

 FDD FF φωω /)()( =       (20) 

hereby the equation (19) changes to w

 ωωωωε
τ

dF
r DA

F
DA ∫

0
6 )()(      (φκ F

∞
−∝Γ 4

2

21) 

he equation (21) now shows the basic physics of 
p of the normalized donor fluorescence spectrum

acceptor absorption spectrum, decreases with 6th power of donor-acceptor distance, and 

plete 
expression for the energy transfer, expressed in the units of wavelength λ, is given by 

T the Förster energy transfer. The rate 
is proportional to the overla  and the 

depends on the donor fluorescence quantum efficiency and lifetime, and the mutual 
orientation of the donor and acceptor transition dipole moments. The com
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  λλλλε dF∫
∞

4)()(    (22) 
τπ
φκ

rNn DA
FA

F
DA =Γ

0
645

2

128
)10ln9000(

where NA is Avogadro’s number, and the refractive index n appears because the 

vacuum.  

at which the energy transfer rate is equal to the fluorescence rate of 
the donor in the absence of acceptor, i.e. at which 

interaction between the two dipoles occurs in a dielectric medium rather than in 

It is now possible to define the Förster distance R0 as a distance between the 
donor and acceptor 

. It follows that  FDA τ/1=Γ

   λλλλε
π Nn DA

A
∫
0

450 )()(
128

   (23) 

For a given pair of donor and acceptor molecules the

φκ dFR F
∞

= 4
2

6 )10ln9000(

 R0 is a constant and the rate of 
nergy transfer is simply givene  by  

   
6

01
⎟
⎞

⎜
⎛=Γ

R       (24) 
⎠⎝ rF

DA τ

One way to experimentally measure the en
changes in fluorescence spectra of both the donor and acceptor upon excitation of the 

ectrum of the donor 

r can be measured. At 0

donor and acceptor fluorescence. Typically, R0 is 
on the order of 2 – 5 nm, which is comparable to the size of many proteins and to the 

ickness of biological membranes. It i
gy transfer between donor and accepto

from the results the distances between, e.g., binding sites on the proteins. Recently, 

transfer.  

 ergy transfer is to measure relative 

donor only. In case of zero energy transfer, only the fluorescence sp
is observed. In case of 100% energy transfer, only the fluorescence spectrum of the 
accepto R  the efficiency of the energy transfer is 50% and the 
energy is equally distributed between 

th s thus possible to measure the efficiency of 
ener r labels in biological samples and to deduce 

Förster energy transfer is increasingly being used in the study of biochemical and 
biophysical processes, such as protein folding, on single molecule level. 
 Another way to study the energy transfer process is to measure the fluorescence 
lifetime of the donor in the presence of the acceptor, and compare it with the donor 
fluorescence lifetime in the absence of the acceptor. With increasing efficiency of the 
energy transfer the measured lifetime shortens compared to the case of zero energy 
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4.3. Dexter energy transfer 

 In donor-acceptor systems where the dipole-dipole energy transfer mechanism is 
negligible due to weak absorption or emission transition dipoles the energy can be still 

pends on the overlap of the respective 
mole

transferred via electron-exchange mechanism, first described by D.L. Dexter. Since the 
mechanism involves exchange of electrons between the donor and acceptor molecules, 
as schematically shown in Figure 32, it de

cular orbitals and is effective only on very short D-A distances. The theoretical 
description begins with the transfer probability expressed by the general Fermi’s golden 
rule.  

( )AD
e
DA

c
DA

π HH ωωδ DA −⎟
⎠
⎞⎛ +

22

2h
    (⎜

⎝
=Γ 2 25) 

cThe equation (25) is more general than (2) as it contains both the Coulomb DA  and 

exchange 

H

eH  interaction terms. IDA n the treatment of the dipole-dipole energy transfer 

e  could be neglected because at the relevant D-A
b term

the Eq. (9) shows that the Coulomb term is very small and the exchange term becomes 

the exchang  term  distances it is much 
weaker than the Coulom . On the other hand, for weak transition dipole moments 

the dominant interaction.  

Figure 32 

The exchange term can be expressed as  

 

e

g

donor*

g

acceptor

e e

g

donor

g
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e

drHH A
u
D

e
DA

u
AD

e
DA ∫= )2()1())(1()2( ψψψψ     (26) 

where the indexes 1 and 2 refer to the different electrons originally located on the donor 
and acceptor molecules. It is now necessary to include the spin state of the electrons by 
including spin wavefunctions χ as 
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 )1()1()1( χψψ →        (27) 

The exchange term now takes the from of 

 σχψχψχψχψ drdHH AA
u
D

u
D

e
DA

u
A

u
ADD

e
DA )2()2()1()1())(1()1()2()2(∫=  (28) 

Since the Hamiltonian in Eq. (28) does not operate on the spin wavefunctions the 
integral can be separated as 

 σχχχχψψψψ ddrHH A
u
D

u
ADA

u
D

e
DA

u
AD

e
DA )2()1()1()2()2()1())(1()2( ∫∫=  (29) 

he second integral can be re-written accord

uuu

T ing to the electron coordinates as  

 12 )1()1()2()2()2()1()1()2( σχχσχχσχχχχ ddd DAADADAD
u∫∫∫ =  (30) 

As a result of the orthogonality of the spin wavefunctions of the same electrons the 

 )2()2( AD

expression (30) is different from zero only when 

χχ =   and  )1()1( u
A

u
D χχ =     (31) 

The physical meaning of the condition (31) is that energy transfer by the exchange 
mechanism can occur only when the ground states of the D and A have the same spin, 
and at the same time the excited states of the D and A are in the same spin states. The 
condition for the ground states is fulfilled automatically since the ground states are 
singlets. The energy transfer can thus occur between D and A which have the same spin 
multiplicity of the excited states, i.e. between singlet D and A, or between triplet D and 
A. Singlet-singlet transitions are often allowed and the energy transfer between excited 
singlets is dominated by the dipole-dipole Förster mechanism. The Dexter exchange 
mechanism is thus often synonymous with triplet-triplet energy transfer. However, care 

taken in cases where S0-T1 transitions are partly allowed (efficient 
ns are forbidden. 

The first integral of the Eq. (29) contains the exchange operator  

must be 
phosphorescence) or where S0-S1 transitio

r
eH e

DA κ

2

=        (32) 

anism 
The use of this operator in the Eqs. (29) and (26) leads to the following rate of energy 
transfer by electron exchange mech
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 ∫
0

)()( dFZ DADA
h

 
∞

∝Γ 22 ωωωεπe     (33) 

he integral in the Eq. (33) contains the overlap of normalized donor fluorescence and 
normalized acceptor absorption spectra. Since at least one of these transitions is usually 

he donor and acceptor excited states. The quantity Z2 is a 
function of the D-A distance r  

      (34) 

nor and 
acceptor molecules, respectively. Since, according to the dependence (34), the energy 

ansfer rate is an exponentially decreasing function of the D-A distance
by the Dexter exchange mechanism occurs efficiently only over very short distances on 

Compared to the 
from the donor to the acceptor molecule. The result is the creation of the D+ and A- ions. 

lar orbitals. The dependence of the transfer 
rate constant on the D-A distance can be simplified as  

T

spin-forbidden, the physical meaning of this integral is to express the condition for the 
energy difference between t

 )/2exp(2 LrZ −∝

where L is an average Bohr radius for the excited and ground state of the do

tr , energy transfer 

the order of ~ 1 nm.  

 

4.4. Photoinduced electron transfer 

In some aspects, the Dexter exchange mechanism of energy transfer is similar to 
another light-induced intermolecular process, the electron transfer. Electron transfer is 
usually treated as a subject of physical chemistry, and here only the main features of the 
process are summarized. The mechanism is schematically shown in Figure 33. 
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Figure 33 

Dexter energy transfer, only the excited state electron is transferred 

As with the energy transfer, the necessary condition for the electron transfer to occur is 
overlap of the donor and acceptor molecu



( )[ ]Lrel
DA −−∝Γ βexp       (35) 

 is again the average Bohr radius and the coef
proportional to the overlap between the donor and acceptor electron orbitals. The Eq. 
where L ficient β is a quantity inversely 

(35) is the expression of the exponential decrease of electron transfer efficiency with 
increasing intermolecular separation. Besides the distance, other parameters affecting 
the electron transfer rate are the potential energy functions of the donor and acceptor, 
mutual orientation, shape and nodal character of the respective electron orbitals, and 
spin states.  
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5. External field effects 

5.1. Stark effect 

The effects of electric field on the optical properties of molecules can be best 
illustrated using classical electromagnetic approach. The nature of the effect will vary 
depending on whether the molecule has a permanent electric dipole moment in at least 
one of its electronic states.  

1. Polar molecules 

Let us assume that a molecule has an electric dipole moment mG in its ground state 
and a dipole moment mE in its excited state. Energy of an electric dipole m in the 
electric field F is generally a dot-product of the two vectors  

 

External electric or magnetic fields acting upon organic molecules can change the 
energy levels of their ground and excited states. When the changes in the ground and 
excited states are different the optical transition energies change, leading to splitting and 
shifts in the spectral lines. Spectral changes caused by external electric field are called 
Stark effect while those caused by magnetic field are known as Zeeman effect.   

 

Fm ⋅−=E        (1) 

The energy levels of the molecular ground and excited states in an electric field F will 
be accordingly modified as 

    and      (2) 

The optical transition energy in the electric field is the difference  

 

Fm ⋅−= GG
F
G EE 0 Fm ⋅−= EE

F
E EE 0

( ) Fmm ⋅−−Δ=−=Δ GE
F
G

F
E

F EEEE 0     (3) 

where 0EΔ  is the energy of the transition in the absence of the electric field. The Eq. 
(3) shows that the transition energy in the presence of the electric field is shifted by an 
amount which is proportional to the difference Δm of the permanent dipole moments in 
the molecular ground and excited states. Spectrally, the absorption or fluorescence peak 
is shifts proportionally to the first power of F, and the phenomenon is accordingly 
called linear Stark effect. Whether the shift is to the blue or red, i.e. to higher or lower 

 61 



energies, depends, as obvious from the Eq. (3), on the relative magnitudes of mG and 
mE. Molecules with stronger dipo

oment 
roportional to the polarizability α 

α        (4) 

The e

 will again be modified as 

F
GE αΔ−Δ=      (6) 

tional to the second power 

tark effect. The directio

is based on considering the effect of electric field on one 
molecule. In practical experiments on organic molecules in condensed phase there are 

rge numbers of molecules oriented randomly with r
local dielectric constant inhomogeneities around the molecule and symmetry of the 

nt dipole moment in 
non-polar molecules even in the absence of the external electric field. The common 
bservation is thus of broadening and splitting

shift. The effect most often observed is linear Stark shift with small contribution of the 

le moment in their excited states will experience red 
spectral shift. 

2. Non-polar molecules 

For molecules without permanent dipole moments the linear Stark effect is zero. 
In such molecules, the external electric field produces an induced dipole m
p

 m −=ind F

nergy of the induced dipole moment in the electric field F is then according to (1) 

 2FE α=        (5) 

The optical transition energy

 EE FF −=Δ 20 FEE

where Δα is now the difference between the polarizabilities of the ground and excited 
states. The spectrum is shifted by an amount which is propor
of the electric field intensity and the corresponding phenomenon is called quadratic 
S n of the spectral shift again depends on the sign of Δα and can 
be either blue or red. 

The above discussion 

la espect to the field F. Moreover, 

molecular environment will almost invariably induce a permane

o  of the optical spectra rather than pure 

quadratic part. Purely quadratic Stark effect has been observed only recently using 
single aromatic molecules in organic crystals at low temperatures. 

The Stark effect has an important application in the experimental technique of 
electroabsorption where the difference in absorption spectra with and without the 
presence of the electric field is measured. The form of the difference spectrum as either 
first or second derivative of the original absorption spectrum allows, e.g., to distinguish 

 62 



Frenkel exciton from charge-transfer states. 

 

5.2. Zeeman effect 

Similar to the Stark effect, the Zeeman effect describes the influence of external 
magnetic field on the molecular optical properties. The main difference is that each 
electron involved in the optical transition possesses a magnetic dipole moment in the 
form of the orbital moment and spin moment. In many cases, the contribution from the 
spin moment is neg

Generally, the ener

  (7) 

he magnetic dipole moment of an
momentum L is expressed as 

ligible and the phenomena observed can be explained based on the 
orbital magnetic moment only (normal Zeeman effect). 

gy of a magnetic dipole moment μ in external magnetic field B 
is given by 

Bμ ⋅−=E        

T  electron associated with its orbital angular 

 Lμ
e

orbital m
e

2
−

=        (8) 

For a magnetic field pointing in the z-direction we may take the z-component Lz of L to 
write 

 BmBL
m
eE Blz μ==

2
      (9) 

where we made use of the definition of Bohr magneton μBB

e
B m

e
2
h

=μ        (10) 

and the relationship between Lz and the orbital magnetic quantum number ml

  hlz mL =       (11) 

The equation (9) gives an expression for energy levels spaced equally due to the 
quantum number ml. The displacement of these energy levels from the zero-field value 
gives the observed multiplet splitting of spectral lines in Zeeman effect. 

In cases where electron spin contributes to the observed Zeeman effect the 
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equation (9) must be replaced with a more general relation  

 Bmg
m
eE jBLμ=⋅+= BSL )2(

2
     (12) 

where gL is a geometrical factor (Lande’s factor) accounting for the different 
orientations of the orbital and spin moments, and mj is the total magnetic moment 
quantum number. Historically, the effect of magnetic field with the contribution of 
electron spins has been called anomalous Zeeman effect. 
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6. Principles of high resolution optical spectroscopy 

Conventiona nce spectra provide only limited 
information on the electronic and vibrational st cture of molecular states. Usually, it is 

l absorption and fluoresce
ru

able study of the detailed 
ructure of vibronic transitions of complex molecules. 

 

6.1. Homogeneous and inhomogeneous spectral broadening 

In Chapter 2 it was shown that the shape of an absorption spectral line 
corresponding to the transition between two quantum energy levels has a Lorentzian 
profile, and that commonly observed absorption spectra of aromatic molecules in 
solutions are envelopes of a large number of Lorentzian lines originating from different 
vibronic transitions. In usual absorption measurements samples with concentrations on 
the order of 10-5 M or higher are used, which means that 1015 - 1020 molecules are 
probed at the same time. From this point, it is interesting to look at the effect of 
ensemble averaging of optical spectra. Figure 34 shows a fluorescence spectrum at 
room temperature of carbocyanine molecules adsorbed on a glass surface at ensemble 
concentrations (left) and a corresponding fluorescence spectrum measured from a single 
molecule (right). The comparison shows that the spectra are identical which is an 
example of homogeneous broadening of optical spectra. 

 

 

 

 

 

 

Figure 34 (reprinted from K. Weston et al, J. Chem. Phys. 109 (1998) 7474) 

possible to assign the observed absorption bands to individual singlet states S1, S2 and 
higher, and to obtain Franck-Condon factors for limited vibronic transitions. To reveal 
the wealth of information contained in the optical spectra it is necessary to remove the 
various types of broadening of the absorption or fluorescence bands. This Chapter 
introduces principles of several spectroscopic methods that en
st

~ 10 15 molecules 1 molecule
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In addition to the multitude of vibronic transitions active at room temperature, Doppler 
or collision

 

 

 

 

 

 

 

Figure 36 

al broadening in the case of gases or solutions, or interaction with matrix 
phonons in the case of molecules doped into solid matrices are the main contributions to 
the observed homogeneous spectrum at room temperature. Thus, to decrease the 
homogeneous linewidth, it is necessary to decrease the number of active phonon or 
vibronic modes. This can be done by lowering the temperature of the experiment down 
to the temperature of liquid helium, i.e. to 4.2 K or below. The effect of lowering the 
temperature on the ensemble absorption spectra of pseudoisocyanine molecules is 

 

 

 

 

Figure 35 

shown in Figure 35. At the temperature of 4.2 K all optical transitions are essentially 
represented by zero-phonon lines; still the absorption spectra at 300 K and 4.2 K are 
almost identical. This is a result of inhomogeneous broadening present at the cryogenic 
temperatures. The origin of inhomogeneous broadening is shown schematically in 
Figure 36. In the solid matrix, each molecule is located in slightly different local 
environment.  
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Mechanical strain and electrostatic interactions modify differently the electronic energy 
levels of molecules at each location and cause each molecule to have slightly different 
optical transition energy. Even though the optical transitions themselves now appear as 
narrow Lorentzian lines, the overall spectrum is an envelope of spectral lines of a large 
number of molecules, as shown in Fig. 36. 

The inhomogeneous broadening can be partly or completely removed using 
special spectroscopic techniques. Those most often used will be introduced in the 
following sections. 

 

r 
selec
trans  a 

ries of sharp fluorescence lines corresponding to the vibronic transitions 
. An example of the effect of excitation light on the structure of 

uorescence spectra is shown in Figure 37 for the molecules of a bisanthene derivative 
t 4.2 K. Excitation with a broadband conventional source leads to the usual broad 

tuned to the peak of the lowest energy 
bsorption band is accompanied by the appearance of a series of sharp lines both in the 

main band and in the first 
vibrational band. The intensity of 
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6.3. Spectral hole-burning 

6.2. Fluorescence line-narrowing 
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The technique of spectral hole-burning is in many respects similar to the method 
of fluorescence line-narrowing. The sample is again irradiated with spectrally narrow 
laser light tuned within the inhomogeneous profile. Only molecules with their optical 
transition in resonance with the laser frequency will absorb the light. In contrast to the 
previous method, however, the excitation light is very strong and leads to a permanent 
change to the absorbing molecules. The change can be photochemical of photophysical 
(non-photochemical) in nature and the phenomena are accordingly called photochemical 
(PHB) and non-photochemical hole-burning (NPHB). The light-induced change leaves 
the number of molecules absorbing at particular frequency altered and the 
corresponding spectrum shows a dip, or “hole” at the frequency. An example of spectral 
hole in the absorption spectra of J-aggregates of pseudoisocyanine molecules is shown 
in Figure 38.  

 

 

 

 

 

 

 

 

Figure 38 

 

The profile of the spectral hole, when measured carefully, is a mirror image of the 
absorption lineshape and provides information on the homogeneous width of the 
spectral line at low temperatures. The linewidth can be expressed as  
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where T1 is the excited state depopulation time (fluorescence lifetime) and T2
* is phase 

relaxation time (pure dephasing time) describing phase relationship of the excited-state 
wavefunctions. Measuring the spectral hole profile and its development in time thus 
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provides a tool to study various excited state relaxation processes, as well as relaxation 
processes occurring in the solid matrix.  

 

6.4. Single molecule spectroscopy at cryogenic temperatures 
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provides an advantage as it is not necessary 
th
molecules in the sample on the optic
of the figure shows that single-molecule lines s

101

103

102

104

105

Number of

statistical
fine structure

ule

inhomogeneous 
band

molecules:

single
molec
lines

1086420
Frequency offset [GHz]

Frequency offset [MHz]
600200

Numerical simulation Experiment

Lorentzian
line

Figure 39 

at the wings of the inhomogeneous band even when there are thousands of molecules 
lts in the right part of the figure 
The single-molecule absorption 
 a Lorentzian profile as predicted 
ime. Compared to the previous 

spectroscopic methods 

 69 



provi tion on the average values of physical observables, single-molecule 
ferent information based on parallel 

bers of individual molecules, resulting in distributions of 
actua
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6.5. Single-molecule detection at room temperature 

Though strictly speaking not a high-resolution spectroscopic technique, 
single-molecule detection at room temperature retains the advantage of removing 
ensemble averaging from the measured phenomena. At room temperature, however, the 
spectral selectivity due to the inhomogeneous broadening is no longer applicable and 
individual molecules for experiments must be isolated spatially within extremely diluted 
microscopic samples. Also, the requirements for high absorption cross-section, high 
fluorescence quantum efficiency and high photostability are much stricter at room 
temperature.    
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