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1. Quantum mechanics of the molecule-radiation interaction

Classical treatment of the interaction between an atom or molecule and
electromagnetic radiation based on Lorentz oscillator model assumes that an electron is
attached to the nucleus by a spring and responds to the oscillating electric field of light.
The model correctly predicts the dispersion relation for the real part of the refractive
index. To account for the effects of light absorption by atoms or molecules, the model
has to rely on introducing an arbitrary damping of the electron oscillatory motion. The
damping does not have any apparent physical interpretation in the classical theory. Still,
the theory succeeds in correctly predicting the frequency dependence of the imaginary
part of the refractive index in the form of the Lorentzian absorption line shape. For the
physical meaning of the absorption process we have to turn to the quantum-mechanical
description of the molecule-radiation interaction. In the semi-classical approach which
will be introduced here the molecule is treated quantum mechanically and its equation
of motion is the time-dependent Schrodinger equation. The electromagnetic radiation is
treated classically based on Maxwell’s equations. This approach is sufficient for the
explanation of the processes of light absorption and stimulated emission; the
phenomenon of spontaneous emission has to be introduced as phenomenological. For
the full treatment of spontaneous emission, theory including quantization of the
electromagnetic field would be necessary.

1.1. Unperturbed system

The semi-classical treatment of the molecule-radiation interaction begins with the
description of the unperturbed system. Let W(r,f) be the time dependent

wavefunction of the molecule. The Schrddinger equation is

i oV (r,t)

o = HY(r,1) 1)

where H is the Hamiltonian containing the operators for kinetic and potential energy. If
H is time-independent, “Y(r,z) can be written as a product of space- and

time-dependent components
V(1) =y (r)e@) (2)

States that can be described by Eq. (2) are called stationary states. Inserting (2) into Eq.
(1) gives



iharp(t) 1 _Hy(r) 3)
o o) y(r)

For Eq. (3) to be valid for all » and ¢, both sides must be equal to a constant £. The
resulting two equations are

Hy(r)=Ey(r) (4)

which is the time-independent Schrédinger equation for energy eigenvalues, and

op(r) 1 _ _E (5)
ot o(t) h
Eq. (5) is easily solved to give
E

(1) = exp(—l;t) (6)

Thus, the total wavefunction of the unperturbed system is generally
E
V(1) = '//(r)exp(—z?) (7)

Since we are concerned with interaction of the molecule with electromagnetic radiation,
we consider, for simplicity, two electron energy states 1 and 2.

E
state 2 E, W, (r,1) =y, (r)exp(-i ft)

state 1 E, Y, (r,t) =y, (r) exp(—i%t)

The corresponding wavefunctions ¥, (r,7), W,(r,t) satisfy the energy eigenvalue
equations

HY,(r,1) = E\¥,(r1)
HY,(r,t) = E,'¥,(r,1) (8)

and the time-dependent wavefunctions can be written as



E E
(1) =y () exp(=i—L0) (1) =y () exp(=i—21) 9)
The energy difference between the states corresponds to the transition frequency ay:
E,—E =haw, (10)

The total wavefunction can be written as a linear combination of the wavefunctions of
the states 1, 2:
Y(r,t) = C()¥,(r,t) + C,P,(r,1) (11)

which should be normalized at all times

j W (r, )Y (r,0)dr =|C,(0)] +C, ()] =1 (12)

1.2. Interaction with radiation

Interaction of the molecule with electromagnetic radiation results in change of the
molecular potential energy which can be described by introducing a new Hamiltonian

H+H'

where H is the unperturbed part from Eqg. (8) and H’ is the interaction part. The
corresponding Schrddinger equation can be written as

ih%(cl(t)‘l’l(r,t) +C, ()Y, (I’,t)) =(H + H’)(Cl(t)\yl(r!t) +C, ()Y, (I’,t)) (13)

Given the known stationary solutions of the unperturbed states in the form

ih@‘l’i—(r,t) = HY (r,1) (14)

ot

the Eqg. (13) gives
ih(‘l’l% +¥, %) =H'(C¥,+C,¥,) (15)

where the space and time dependence notation has been omitted for simplicity.
Multiplying Eq. (15) from left by P, integrating over all space and making use of the



normalization and orthogonality conditions gives on the left side

ih( [ ‘I’l*‘Pldr% + [ ¥, dr ac; j _indG (16)

dt dt

and on the right side
G, J v, exp(i%t)H v, exp(—i%t)dr + CZJ'://l* exp(i %t)H v, eXp(—i %t)dr (17)

Combining (16) and (17), we obtain

. dC * oy . *ryr

ih=t=G [wiH ydr + C, exp(—iagt) [y, H'ydr (18)
and similarly

. dCZ * oy . *ryr

= 2=C, [wsH 'y dr + Cexplioogt) [y, H'ydr (19)

The Egs. (18) and (19) are time dependent Schrdodinger equations for the coefficients C;
and C, which can be, in principle, solved for any given form of the interaction
Hamiltonian H.

1.3. Form of the interaction Hamiltonian for harmonic perturbation

Electromagnetic radiation is usually described by oscillating electric field
characterized by frequency @ and propagation number «:

E = E,cos(kz — wt) (20)

For optical frequencies, the size of typical molecule is much smaller than the
wavelength and spatial variations of electric field across the molecule are negligible. We
may therefore drop the space dependence of electric field and use

E = E,cos(wt) (21)

Considering a molecule, the electric field will act upon a dipole moment

n= —ez r, =—er (22)

where the sum is over all electrons contributing to the dipole moment and e is electron



charge. Due to the interaction the corresponding potential energy will be changed by
E-p. Assuming for simplicity that E points in the x direction, the corresponding

interaction Hamiltonian is written as
H' = E,cos(ar)|u| = eE, cos(wr)x (23)

where x is the x-component of r. The operator A’ has an odd parity H'(-r)=-H'(r),

meaning that . H'y, must also have odd parity and

Il//fH't//ldr =0 and jw;H'Wzdr =0
The Schrodinger equations for coefficients C; and C then simplify to

., dC ;
-

ih% = C, exp(iwyt) E, oS(ot)| 14| (24)
where the dipole moment matrix elements are
| = e[wixp,dr - and  |w,| = e[ yxyndr (25)

The matrix elements given in Eq. (25) describe electric dipole moments due to
transitions between states 1 and 2, and as such are called transition dipole moments of
electronic transitions.

1.4. Approximate solutions: perturbation theory

General solutions of the Schrddinger equations (24) are complicated and the
equations are often solved approximately using time-dependent perturbation theory.
Perturbation theory can be applied in cases where the Hamiltonian is in the form H+H’,
H representing Hamiltonian of the unperturbed system and H’ the perturbation. If the
solutions (wavefunctions and energies) of the unperturbed system are known exactly
and if the perturbation /A’ is small compared to H, the solutions of the perturbed system
can be found using the unperturbed solutions as a basis. In the case of Egs. (24) we



assume that the perturbation £y is small compared to the energy of the system, and we
may set the initial values at time z = 0 to C3(0) = 1 and C»(0) = 0. This initial condition
states that the molecule is in state 1 (called ground state) at ¢t = 0. Solving the Eqgs. (24)
for these initial values will give solutions in the first order of perturbation theory which,
for our purpose, will be sufficient. Using the first order solution in the Egs. (24) would
further give solutions in the second order, and repetition of this process would result in
an approximate solution that could be written as a power series of Ejp, describing
nonlinear optical effects.
Using C1(0) = 1 and C»(0) =0 in Eq. (24) gives
dcC,

ih=t=0 (26)

which has a trivial solution, and

ih dcgz = Ey|11,|exp(ia,t) cos(ar) (27)

Using the identity 2cos(wr) = exp(iwt) +exp(—iawt) we obtain

d; = E°|:12| %(exp(i(a)0 + o)1) +exp(i(w, — w)t)) (28)

The Eqg. (28) should now be integrated with respect to time from 0 to ¢, which is the
period for which the perturbation acts upon the system.

Using Iexp(ax)dxz % exp(ax) + ¢ we obtain, for example

exp(i(w, + w)t) -1
i(w, + )

j‘exp(i(a)0 + w)t)dt =

and the solution for Cx(t) in the first order of perturbation theory as

¢ (1 = Eolttel L 1=exp(ile, + @)r) | 1—exp(i(e, — o)) 29)
? h 2 W, + @ Wy, — @

Taking into account the magnitude of electromagnetic frequencies near resonance ay,
@, + @ >> @, — o and we may neglect the first term in Eq. (29). This approximation is

usually called rotating wave approximation. The Eq. (29) then simplifies to



E, - (. —

G, (1) = o|ﬂ12|1 1-exp(i(w, — ®)1) (30)
ho 2 Wy — @

Instead of the value of coefficient C,(t) we will calculate the physically important

quantity C,(t)C,(t) =|C2(t)|2 which gives the probability that the molecule will be in

state 2 (excited state) at time .

0 - Elﬂlzl 1[2 exp(=i(e, — w)t) — exp(i(@, - a))t)J 31)

4 (@, — )

Using cosa = cos’ a/2—sin’ a/2 the solution simplifies to

2 sinz(a)0 _wtj
KUN—E|A (32)

(O a))z

The requirement that £y be small ensures that the approximate solution (32) does not
violate the normalization condition.

The solution (32) is plotted in Figure 1 as a function of the detuning ay— . As
expected, the probability of finding the molecule in excited state is maximum for
wy= w, where it is
proportional to 2. However, if
the time ¢ is finite, the
probability is non-zero for
certain values of wy— @, a
fact that is related to the
Heisenberg uncertainty
principle.

IC, (017

| | |
-6n/t -4nft -2n/t 0 2n/t  A4Anlt 6t
Wy — @

Figure 1



1.5. Transition rate

Another important physical quantity is the transition rate between states 1 and 2,
which gives rate of the absorption of light by the molecule (number of photons absorbed
per second). The rate is defined as the probability of finding the molecule in the excited
state divided by time ¢

G Eu’ Sinz( Oz_wtj
r GO Elm (33)

12 p 472 (a)o _a)jz
t
2

The time-dependence in (33) can be eliminated by using the limit

lim "1~ 27500

— t

where J(a) is Dirac’s delta function. The expression (33) simplifies to

T

. =
2 op?

Ep,[ 8(@, — @) (34)

which is an important result in quantum mechanics, often referred to as Fermi’ golden
rule. In its general from, Fermi’s golden rule states that the probability of a
guantum-mechanical transition is proportional to the square of the matrix element of the
interaction Hamiltonian.

Instead of the electric field amplitude £, which does not take into account the
frequency dependence we may use the electromagnetic field energy density defined as

[W(@)do =46, (35)
and use well-known property of the Dirac’s delta function

[ (@)dws(w, - w) =W (@) (36)
to obtain

I, = #IMZIZW(%) (37)

The transition rate is related to the Einstein’s coefficient of absorption B, via



I, = B,W(w,). The expression (37) was derived for the x-component of the dipole
moment. From averaging over all orientations a correction factor of 1/3 has to be added
in the Eq. (37). The resulting expression for the Einstein’s coefficient Bj, thus reads

B, = (38)

T 2
Beg

The expression for the Einstein’ coefficient of stimulated emission B could be
obtained in the same way by taking E, — E, = —ha, in EQ. (10). One would obtain Bi,

= le.

1.6. Spontaneous emission

The treatment presented so far describes processes of absorption and stimulated
emission — processes that occur only in the presence of the perturbation. As seen from
the Fermi’s golden rule (37), if W(a) = 0 (without light) the rate "5, = 0 and the
transition does not occur. After the perturbation is switched off, molecule in the excited
state would stay in this state forever. This is contrary to the experimental observation
that molecules decay to their ground states spontaneously in relatively short times. The
corresponding process is called spontaneous emission. For full treatment of spontaneous
emission it is necessary to use quantum theory of electromagnetic field. In
semi-classical approach, the effect of spontaneous emission can introduced
phenomenologically into the Schrédinger equation for coefficient C, (24) as a new
decay route.

&__ic °|:12|exp(za)ot)005(0)t) VsrCo (39)

dt
In the absence of perturbation (£ = 0)

dcC
d_tz =—7C, (40)

which is solved easily to obtain
G, (1) = C,(0)exp(—y i) (41)

In (41), the phenomenological constant ysp is related to the Einstein’s coefficient 4 as
2ysp = A, and to the excited state radiative lifetime 1 as



1
— =2y (42)

z-R
For completeness, the Einstein’s coefficients for stimulated and spontaneous processes
are related as

ho'
A = ?BlZ (43)
T C
The processes of absorption, stimulated emission and spontaneous emission are shown

symbolically in Figure 2.

2 2 O 2
ha, ha, 2 ha, hay,
ANNNS> ANAS AN AN
%% 2
1 1 1
absorption stimulated emission spontaneous emission
Figure 2

1.7. General solutions: optical Bloch equations

The Egs. (24) provide an exact description of the state of two-level molecule in the
presence of oscillating electric field. The solutions by perturbation theory are
approximations in the sense that they retain only first order solutions for very weak
perturbation. For more general description, it is useful to introduce density matrix p
defined as

Pu = |C1|2 P = |C2|2

*

P = Clcg P =CC (44)

The diagonal elements represent populations of the ground and excited states while the
off-diagonal elements describe coherences, that is relationship between phases of the
two state wavefunctions. The definition (44) leads to the following conditions

Py + 0, =1 (normalization) P = Pa (45)



Equations of motion for the density matrix are expressed as

dpl'j =C dC:+C*dCz

‘ A 46
dt "dt ! dt (46)

The derivations with respect to time of coefficients C; can be taken from the Egs. (24).
Substitution of (24) to (46) yields

dp,,

d =—iQ), COS(a)t)(plz exp(iayt) = pu eXp(_iwot)) (47)

where we used the symbol Qg for

E
o, -5l @
Similarly,
dpy _ _dpy (49)
dt dt
and
d(ZlZ — ZQR COS(CUt) exp(—ia)ot)(pll - p22) (50)

Using again 2cos(wt) =exp(iet) +exp(—iewt) and the rotating frame approximation,
that is neglecting the fast oscillating terms exp(i(a@, + ®)t) , we can rewrite (47) as

% B _i%(plz eXp(i(wo - o)t) - Po1 eXp(_i(wo - w)t)) (51)

By using a substitution

P, = exp(i(@, — o)1) py, P = exXp(=i(w, — @)1) pyy

P = Pu Pr = Pz (52)
the Egs. (47), (49) and (50) become

dp dpy _ Qp~ =~
_dp;_z =— 5;11 = _ITR(plz - pzl) (53)

dp dp,,  Qui~  ~ .. ~
Bi PG, 5 )yl e



The set of equations (53) and (54) is known as optical Bloch equations describing the
interaction of 2-level molecule with classical electromagnetic radiation. When solving
the set of first order differential equations we assume the solution in the form

p; () = p; (0)exp(ir) (55)
and insert the assumed solution into Eqgs. (53) and (54). For the Eq. (53), for example,
we obtain

~ Q. - Q. -
— 4p,,(0) _ZTRPH(O) + 171%,021(0) =0

Combining with expressions obtained from the other equations we may write a matrix
form

) 0 i& —i& /511(0)
2 2
0 -1 —i% i% P2 (0)
o o L (56)
17 —IT l(a)o—a))—/I 0 plZ(O)
.QR -QR .
—17 17 0 —1(0)0—0))—1 521(0)

The condition that the determinant of the above 4x4 matrix is equal to O gives the
equation for the coefficients 4

222 + (0, - 0)? +Q%)=0 (57)

The equation (57) has three roots

4=0 and 4, =+iy(0, - 0)? + Q% = +iQ (58)

where we have introduced a new symbol Q for simplicity. Using the three roots (58) we
can write the general solution of Bloch equations in the form

P, (1) =p + pi? exp(iQu) + p? exp(—iCy) (59)

The three coefficients p\”, 5, 5{” can be determined from the initial values p, (0)



for a given problem and from the first and second derivatives at time ¢ = 0 of the matrix
_ _ dp.(t d*p.(t
elements obtained from the Bloch equations, {%()} and {%()} . For the
t=0 t=0
initial conditions of the molecule being in the ground state,

522 0)=0, :511(0) =1 and 512 (0) = 521(0) =0 (60)

solving the respective three equations for the 5", 5, o\ coefficients gives

L Qo
()= 2sin ( : j (61)

For the case of resonance ay = @, the definition (58) gives Qz = Q and (61) further
simplifies to

Pall) = sinZ(Q;’j ©2)

As can be seen from Eq. (62), the population oscillates periodically between ground and
excited states with frequency Qg. This phenomenon occurring during the interaction of
a two-level molecule with strong electromagnetic field is called Rabi oscillation and the
corresponding frequency Qg is a Rabi frequency. Figure 3 shows the Rabi oscillations
for various values of the detuning (ay — ®).

0=|w,— o)’

05

0.0

Figure 3 (reprinted from [1])



1.8. Effect of spontaneous emission in Bloch equations

The effect of spontaneous emission can be included in Bloch equations
phenomenologically, similar to Eq. (39). The resulting equations have the form

dpy, _d/511 __.Q

dt - 7 - _I7R(512 - 521)_ 27/SP522 (63)
dp. dpy  Qp~ =~ . ~
gtlz T a/?t21 :_ZTR(pll_pgz)+(l(a’o — )= 7sp)Pra (64)

The solution of the equations (63) and (64) proceeds in a similar way as that of the Egs.
(53) and (54) by solving the roots of a 4x4 matrix determinant. For the initial conditions
(60) the solution for the excited state population is

~ o) 3y 3y opt
D0, (1) = m{l - (cos(At) + Z—XSIn(At)j exp(— %ﬂ (65)

where A =,/Q3% -1y . Figure 4 shows the effect of increasing ratio ys/Qg on the

Rabi oscillatory behavior. Increasing radiative rate ysp causes increased damping of the
Rabi oscillations which disappear completely for ysp/Qr > 1.

Figure 4 (reprinted from [1])



2. Excited states of organic molecules and excited state relaxations

The preceding chapter dealt with general description of the interaction of light with
a quantum mechanical system, described by a wavefunction\¥'(r,¢) . In this chapter, we
will specify the ground and excited states of molecules that correspond to transitions in
the optical part of electromagnetic spectrum. We will also deal with the various
processes that lead to the formation and relaxation of molecular excited states.

2.1. Classification of excited states

Molecules with electronic excited states and transitions in the UV and visible part of the

spectrum can be broadly divided into three groups:

1. Molecules that absorb radiation because of an electronic transition localized on a
single bond. An example is a carbonyl group > C = O, which gives rise to absorption
of light at about 290 nm.

2. Molecules containing conjugated n-electron systems, where the electrons of C = C
bonds become delocalized and are responsible for the molecules’ ability to absorb
light in the entire visible range due to t—r* transitions.

3. Molecules that contain a transition metal ion in a coordination compound. The
interaction of the d electrons with the ligands lifts the 5-fold degeneracy and enables
transitions between the split & orbital levels (d-d transitions). Such transitions are
often in the visible part of the spectrum.

Of the above categories, the conjugated systems are by far the most important group of

molecules with optical electronic transitions and the rest of the talk will concentrate on

these systems.

2.2. Electronic states of conjugated and aromatic systems

There are several methods that can be used to calculate the electronic states of
conjugated systems. These include MO LCAO, free electron method for linear
conjugated systems or perimeter-free electron orbital model for aromatic systems. In the
Hiickel approximation, the oand zelectrons are treated independently, the latter being
considered responsible for the optical properties. As an example, electronic states of the
molecule of benzene can be expressed as linear combinations of the six 2px orbitals
4, @z, ... @ OF individual carbon atoms. The possible linear combinations of the atomic
orbitals are restricted by the requirement that the resulting molecular electronic
wavefunctions confirm to the symmetry of the molecule. The group theory of molecular



symmetry gives the following six molecular orbitals as linear combinations based on the
properties of the Dgy, Symmetry group of benzene as

Yn=@,tQp +@c +@p +@p +@p
Vin =@, —Pg tOc —@p + Qp — Pp
Woa =20+ Py —Pc =20, —Qp + @
W =0+ 20, + Qe —0p — 20, — @
Ve =20, =Py — O + 20, — @y — @
Wer =Py =205 + P+ Pp =20 + ¢

(1)

The symbols a, b, e correspond to the respective symmetries of the states. Graphical
depiction of the resulting 7 molecular orbitals together

with the corresponding energies are shown in Figure 5. _329_
The lowest a state is fully-bonding, the highest b state - /‘
fully anti-bonding, the e states are doubly degenerate. &2
The lowest electronic transition occurs from eiq (7) t0 ey wd - 4
(7#). The two shades represent phases of the molecular ~ -
wavefunctions, pointing either up or down with respect to
the plane of the molecule. Apart from the symmetry %e’g—f )
notation that originates from the character table of the Q j VJ}
respective symmetry point group, the subscripts u and g @
refer to the wavefunction being either even (g) or odd (u) 2 —
with respect to reflection in the center of gravity (a
property called parity).
Figure 5

The six-fold degenerate 2p orbital energy levels of individual (reprinted from [6])
atoms split into 6 energy levels of the molecule:

E,=at2p E,,=atp Es=axp (2)

Two of the energy levels are doubly-degenerate. The symbols « and £ correspond to
Coulomb and resonance (exchange) integrals, defined as

a =gy Hp,dV B = o He,dV (3)

where the indices M, N denote neighboring atomic orbitals and A is the interaction
Hamiltonian.



The effect of the length of the linear conjugated system or the size of the aromatic
system on the electronic wavefunctions and energies can be easily illustrated using the
electron-free models. For example, in the perimeter free electron orbital model (PFEO),
an electron is considered as moving freely in a one-dimensional loop around the
aromatic molecular perimeter. The problem is equal to the problem of a particle in
1-dimensional potential well. Assuming the potential energy at the bottom of the well to
be zero and outside of the well infinity, the time-independent Schrddinger equation to be
solved has the form

oy
2m  ox?

= Ey(x) 4)

The wavefunction must satisfy the boundary condition
y(x)=y(x+1) ()

where x is the coordinate along the perimeter and / is the perimeter length. Solution of
the Schrddinger equation gives

Vo= \/m
W, (x) = /Y cos(2mx /) (6)
W, (x) = I/ sin(27mx /1)

for the wavefunctions and

2712
nh

" omi?

(7)

for the energy, with m being the electron mass. For the quantum number n > 0, each
state is doubly degenerate because the electron can move clockwise or anticlockwise
around the perimeter. Dependence of the state energy on the perimeter as 72 is now
obvious from Eq. (7). With increasing conjugation length, i.e. with increasing number of
aromatic rings, the energy of the states, as well as the energy separation between
adjacent states, decreases. This decrease gives rise to the well-known optical property of
n-conjugated systems, i.e. the spectral red shift with the increase of conjugation length.



2.3. Singlet and triplet states.

So far, we have not included explicitly electron spin in the treatment of the
light-molecule interaction. Each energy level can be populated by two electrons with
opposite spins (+1/2, -1/2). Upon electronic transition, the electron can either remain in
the same spin state, resulting in anti-parallel configuration, or change its spin, resulting
in parallel configuration. The anti-parallel (or paired) configuration state, for which the
total spin number S = 0, is called singlet state. On the other hand, there are three
different ways to achieve the parallel configuration (the one for which |S|=1), with the
resulting projection of the total spin onto z-axis being Ms = -1, 0, 1. As a result, the
parallel configuration state is triply degenerate and as such is called a triplet state. The
situation is schematically shown in Figure 6. It can be shown based on Pauli’s principle
that two electrons with anti-parallel spins have non-zero probability to be found at the
same location, while for parallel-spin electrons this probability is zero. Thus, on average,
parallel-spin electrons are farther apart in space and the resulting lower Coulomb
repulsion lowers the energy of triplet state with respect to singlet.

mg= 1%"3: 1

mg=1/2

Figure 6

2.4. Basic selection rules

In the previous chapter we have derived an expression for the rate of electronic
transition in the form of Fermi’s golden rule (Eq. (34)). The expression contains the
matrix element of the transition dipole moment



My, =—e[yoryidr = [y dr (8)

For the transition to have finite probability the integral in Eq. (8) must be non-zero. This
condition gives rise to a set of conditions called selection rules that the electronic states
have to fulfill for the transition to occur. Each electronic state is characterized by a few
basic parameters: energy, spin multiplicity, symmetry, and for centrosymmetric
molecules also parity. Except of energy, these properties contribute to the value of the
integral (8). Basic selection rules are:

1. Symmetry. Essentially, electric dipole transitions between electronic states of the
same symmetry are forbidden. This selection rule is not obvious by a glance at (8),
and the integrand has to be evaluated for each x, y
and z component of the vector r with respect to
the symmetry of individual components. In terms
of symmetry group theory, only if the product has
the symmetry A; will the integral be non-zero.
Ground electronic states are generally occupied
by paired electrons and as such have the A;
symmetry. The whole integrand (8) will be of the 2 4 \\/ odd (u)

function:

/\ odd (u)

Y/

even (g)

) D

symmetry type A; if both the transition dipole e

moment operator (any of its x, y, z components) 1 even (g)
and the excited state wavefunction belong to the —

same symmetry type. Figure 7

2. Parity. In contrast to the symmetry selection rule, the parity selection rule is easy to
understand by realizing that the integral (8) vanishes for integrands of odd parity.
Since the operator r itself has an odd parity, the parity of the states 1 and 2 must be
different. Thus, ¢ — u and u — g transitions are allowed while ¥ — v and g — g
transitions are forbidden. This selection rule is illustrated schematically in Figure 7
for wavefunctions of a particle-in-box.

3. Spin-multiplicity. To understand this rule, the Eqg. (8) has to be re-written using
wavefunctions including spin components. The wavefunctions y; will be thus
products of the spatial and spin parts

v, =y, (r) x:(o) 9)

The Eqg. (8) will now have the form

my, = [V () 25 (@) () (o) drdo (10)



The transition dipole operator acts only on the spatial part of the wavefunction. The
integration in the Eq. (10) can be thus separated according to the coordinates as

my, = (W (I, (r)dr [ 25 (0)(0)do

(11)

The condition of orthogonality of the spin wavefunctions means that the second
integral in the Eg. (11) can be non-zero only when y,(o) = y,(o), i.e. when the

spin states of the ground and excited states are same. In other words, the spin
multiplicity rule states that electric dipole transitions between states of different
spin multiplicity are forbidden. In conjugated systems, spin multiplicity refers to
either singlet (non-degenerate state) or to triplet (triple-degenerate state).

2.5. Overview of uni-molecular photophysical processes

The Chapter 1 dealt with theoretical treatment of absorption, stimulated and
spontaneous emission. The three phenomena are basis of complex photophysical
processes that can occur on an isolated molecule upon interaction with light. In
describing the processes, it is customary in literature to use the following notation:

first excited singlet state (state 2 of the preceding chapter)

It should be noted that, by
definition, the ground state
corresponding to T; is Sy, i.e.,
ground triplet state T, does not
exist. The processes can be
illustrated by the so called
Jablonski diagram (Figure 8), in
which energy levels are drawn
as horizontal lines, upward
pointing arrows correspond to
population of higher states and
downward

So  ground singlet state (state 1 of the preceding chapter)
S1
Sn higher excited singlet states (n>1)
T,  first excited triplet state
Tn  higher excited triplet states (n>1)
Ss A
S3 ] |
|
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arrows to depopulation (relaxation) of excited states. The full lines depict processes in
which light takes part (radiative), the broken lines processes without involvement of
light (radiationless). The photophysical processes can be divided into the following
categories:

a) Absorption (radiative excitation) transitions. Spin-allowed So — S; and  Sp — Sp are
the most often encountered transitions (i). Sp — T1 and Sp — T, are spin-forbidden but
can be observed using strong light sources (ii). T, — T, are spin-allowed and are
commonly observed using pulsed excitation (iii). S; — S, can be observed using short
pulse excitation (iv).

b) Luminescence (emission or radiative de-excitation) processes. Transitions between
states of the same multiplicity are called fluorescence, those between states of different
multiplicity phosphorescence. S1 — So fluorescence is most commonly observed
luminescence process, occurring on ns time scales (v). T1 — So phosphorescence is
spin-forbidden, resulting in weak, long-lifetime process (vi). S, — Sp fluorescence is a
rare process observed in only a few compounds (azulene) (vii). T, - Sp
phosphorescence is also a rare process, observed e.g. in fluoranthene (viii). T, — T
fluorescence is an allowed process observed, e.g., in azulene (ix).

C) Radiationless transitions. Transitions between states of the same multiplicity are
called internal conversion, those between states of different multiplicity intersystem
crossing. S; — Syand S, — Sy internal conversion occurs very rapidly (ps) and is the
most likely de-excitation process of higher singlet states (xi). T, — Tyand T, — Tpa
internal conversion is also spin-allowed rapid process (xii). S; — Ty (and S; — Ty)
intersystem crossing are the main population processes of triplet states and are
commonly observed (xiv). T; — Sy intersystem crossing is possible by thermal activation
of T, state and is responsible for the phenomenon of delayed fluorescence (xvi). S, — Th
intersystem crossing has been observed for several compounds (xvii). In the following
sections, some of the above processes will be described in more detail.

2.6. Absorption lineshape

The result of quantum mechanical considerations for the transition rate between
ground and excited electronic states was the Fermi’s golden rule:

T

L. =
2 op?

Ep,[ 8(@, — @) (12)

Plotting the frequency dependence of the transition rate according to the Eq. (12) would
give, contrary to experimental observations, a singular line at ay, as shown in the left
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part of Figure 9. This singularity is a consequence of the approximations made during
the derivation of the Eq. (12). The correct derivation of the absorption lineshape is more
complicated and involves calculation of the overall dipole moment resulting from the
interaction of molecular wavefunction with electric field. The dipole moment is, on the
other hand, related to refractive index via polarizability. The refractive index would
separate into real and imaginary parts, the latter being related to the absorption
coefficient.

Instead of following the above procedure we may realize the following property
of the Dirac’s delta function

. ylx
o(w,—w) = — (13)
M of 47
The argument of the limit (13) is known as the Lorentzian lineshape function
F () =L l2 (14)

(@ - o) + 75’

where s has the meaning of the rate of spontaneous emission. Fermi’s golden rule is
thus the result of the approximationy,, — 0. The expression for the transition rate

which includes the proper frequency dependence should be written as

7
2n*

E2| | — L5 Iz (15)

. =
. (a)o - w)z + 7/s1>2

The Lorentzian lineshape of the transition rate is shown in the right part of the Fig. 9.
The full width at half maximum (FWHM) of the line corresponds to twice the rate of
the spontaneous emission which, in turn, is related indirectly to the radiative lifetime.
Shortening of the radiative lifetime thus causes broadening of the absorption line, an
effect known as radiative broadening.



2.7. Absorption vibronic transitions

The treatment of absorption in Chapter 1 was simplified by concentrating on
electron wavefunctions and states and neglecting the effect of the vibration motion of
atomic nuclei. Such treatment is possible in the so-called Born-Oppenheimer
approximation, which takes into account the fact that electrons, because of their much
smaller mass, move much faster than the vibrating nuclei. It is thus possible to
completely neglect the coupling between the nuclear motion and electron distribution.
The total wavefunction of a state W (r,R) can be written as a product of the electronic
wavefunction (r) and nuclear wavefunction y(R) :

Y(rR) =y (r)z(R) (16)

As the vibration motion of nuclei does affect the energy levels of electrons, the
wavefunction (16) should be now used instead of the simple electron wavefunctions in
the expression for the transition dipole matrix element (5), where the operator p now
has the form

n= —le[ +eZZjR_/. (17)
i j

The transition dipole matrix element is then
By, = l//;}(;(_ ezri + ez ZjRjjl//lZldrdR (18)
i j

which can be separated as

n, = —eJ' t//;Zrit//ldrj 2o dR + eI y/;t//ldrj ;(;Z Z R, ydR (19)
i J

Due to orthogonality of the electronic wavefunctions the second element on the right is
zero and the matrix element can be written as

My, = [ 2520dR [y nydr (20)

The transition probability derived in Chapter 1 is thus modulated by a factor depending
on the overlap of the nuclear vibrational wavefunctions, which are usually
approximated by quantum oscillators. Since the transition rate is proportional to the
square of the matrix element (20), it is customary to denote
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The quantity S(y,, ;) is called Franck-Condon factor of an electronic transition.

Similar reasoning leads to the formulation of Franck-Condon principle: Because
the electronic transition takes place much faster than the vibrational motion of nuclei,
the most probable transition occurs between states with the same nuclear coordinates
(position).

The principle can be illustrated using the scheme of Figure 10. Instead of simple
horizontal lines as in the Jablonski diagram, the electronic state potential energies are
drawn as anharmonic oscillators. The vibrational states of the nuclei now appear as
additional set of levels v =
0, 1, 2, ... in each Y,
electronic  state.  The
scheme also shows the
square of the oscillator vi=3
vibrational wavefunctions vi=2
for a few vibrational levels. V=1
The Franck - Condon
principle states that the vi=0
only transitions possible
are those that connect the
two electronic states by

Energy

vertical  arrows.  The
scheme also indicates that
the most probable
transitions to and from
higher vibrational levels
will be those from the
oscillator turning points.
At room temperature (and r0 f’o

at lower temperatures) the

transitions almost exclusively Figure 10

Internuclear distance

occur from the v = 0 vibra-

tional level of the ground state to v = 0 or higher vibrational levels of the excited state.
Each transition which is represented by an arrow in the Fig. 10 appears as a Lorentzian
line in the absorption spectrum. Further, the Fig. 10 shows only one vibrational mode v



and its overtones. In complex aromatic molecules, there are large numbers of
vibrational frequencies v corresponding to the different vibrational modes. Again, each
is represented in the absorption spectrum by a narrow Lorentzian line. The overall
room-temperature absorption spectrum as commonly observed is an envelope of all
vibronic (electronic + vibrational) transitions occurring in the molecule, as shown
schematically in Figure 11.

Absorption

Figure 11

2.8. Absorption: relation to experimental observables

Absorption of light in matter is usually characterized by frequency-dependent
molar absorption (extinction) coefficient & w), expressed usually in units of
[L.mol™.cm™]. According to Beer’s law,

dl

—=—-¢(w)IC 22

5 = cl@) (22)

where C is sample concentration, / length and 7 light intensity. Another quantity often
used in relation to absorption is absorption cross-section o(®), in units [cm?]. o(w) is

related to Beer's law as:

dl

i —o(w)In (23)

where n is the number of molecules in unit volume. However, since Eq. (22) is usually
solved using decade logarithm and Eq. (23) using natural logarithm, the relationship
between the two quantities is

o(w)=2.303¢(w)/ N, (24)

with Na the Avogadro’s constant. It is possible to show that the integrated absorption
coefficient is related to the transition dipole matrix element as
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4=[e(@)dw= 35,7 In(10)

(25)
where c is speed of light.

The frequency dependence of the absorption coefficient is called an absorption
spectrum. The practical amount of information that can be obtained from conventional
absorption spectrum is usually limited by the complexity of electronic and vibrational
states and by various processes that cause broadening of the originally sharp electronic
transitions. Mostly, it is possible to assign absorption bands to individual singlet states
S1, Sz ..., and obtain Franck-Condon factors for limited electronic-vibrational
(vibronic) transitions. An example of
absorption spectra of a series of
aromatic compounds (acenes) is
shown in Figure 12. The spectra
nicely illustrate the effect of the size
of the conjugated aromatic system
(perimeter length /) on the energy of
the system. The spectra of the largest
] compounds, pentacene and tetracene,
also show well resolved vibronic
- structure.

1 1 1 1
2000 3000 4000 5000 6000

T — Figure 12 (reprinted from [5])

2.9. Fluorescence spectra

Fluorescence transition S; — Sy is an inverse process to the absorption transition
So — S;. In absorption, the transitions occur from the O vibrational level of the ground
state to O or higher vibrational levels of the excited state. For aromatic molecules in a
condensed medium (liquid solution or solid matrix), the excited state vibrational
populations quickly relax to the O vibrational level of the excited state due to collision
interactions or exchange of phonons. In most cases, absorption into higher excited
states S, is followed by relaxation into the first singlet S;. Thus, fluorescence process
proceeds (apart from a few exceptions) from the O vibrational level of the first excited
state to O or higher vibrational levels of the ground singlet state. This observation is

28



sometimes called Kasha s rule.

Fluorescence quantum efficiency ¢r is defined as

Gp=ngln,

(26)

where n, is the number of photons absorbed by a molecule per time, and nr number of
photons per time emitted as fluorescence by the molecule. Fluorescence spectrum F(w)
is then defined as relative fluorescence quantum efficiency at frequency w:

Energy

P = osz(a))afao

(27)

If the vibrational wavefunctions and energies in ground and excited states were
same (which, approximately, is the case of polyatomic molecules), the process of

¥,

v'=3
vV'=2
vi=1
v'=0
1IN
absorption | || N1
Y, fluorescence

fo o Internuclear distance

absorption and
fluorescence would
give rise to the

phenomenon of
mirror symmetry
between the
absorption and

fluorescence spectra,
as shown in Figure
13.

Figure 13



The mirror symmetry rule can be also reasoned theoretically considering the relations
My, = [ 25 2000R [ ysdr (28)
for absorption and

Moy = [ 2 20R [ W Rl (29)

for fluorescence. Compared to Eq. (20), the vibrational wavefunctions are written with
the additional quantum numbers 0 and v, v’ to distinguish the vibrational states. Since,
as was shown in Chapter 1, the electronic parts of (28) and (29) are symmetric

2

|,L‘12|2 = |,Uz1|2 if U Z;v%lodRr = U-Zl*vlzodR (30)

which is satisfied if y,, = y,,and g, = x,,.. This is the condition for observation of
mirror symmetry between absorption and fluorescence spectra.

This phenomenon of mirror symmetry can be observed experimentally for many
systems. An example is shown in Figure 14. The difference between the maxima of the
lowest energy absorption and highest energy fluorescence bands, called Stokes shift, is
an important parameter related to the reorganization energy of the molecule.

. diethyloxacarbocyanine
Stokes shift iodide

absorption fluorescence

500
Wavelength (nm)
Figure 14

2.10. Fluorescence lifetime

Let us consider a number of molecules M in their excited states; we can express
their concentration at time # = 0 as [M*]o. Such excited state can be prepared by
irradiating with a strong short laser pulse. The fluorescence intensity 7r will be
proportional to the concentration [M*] at any given time. We can now write a rate



equation

7 = —kp[M *] (31)
with the solution
[M*]=[M*]exp(-t/z.) or 1,(t)=1,(0)exp(-t/7;) (32)

where 7. =1/k. is fluorescence lifetime. Fluorescence lifetime is related to the
radiative lifetime zz defined in Chapter 1 as

1. 1.1 (33)

Tr Tr T
where 7,, =1/k,, are lifetime and rate of non-radiative processes competing with
fluorescence. It follows that fluorescence quantum efficiency

_ ke T
kp+ky, 1,

P (34)

The Egs. (32)-(34) describe generally the effect of non-radiative processes on the
relaxation of the excited state. The non-radiative phenomena may include not only
intramolecular processes but also itermolecular interactions.

2.11. Radiationless transitions

The most commonly encountered radiationless transitions are singlet-singlet
internal conversion S, — S; (on timescales of ~10™ s), thermal relaxation of higher
vibrational states within the same electronic state (~10™2 s), and intersystem crossing
S1 — T1. While the former two processes contribute to the population of the emitting 0
vibrational level of the S; state, the latter process is one of the causes of fluorescence
quenching.

Apart from intersystem crossing S; — T, fluorescence can be internally (intra-
molecularly) quenched by S; — T, intersystem crossing and S; — Sp internal conversion.
The general internal quenching rate kyz introduced in the previous section is thus
composed of the intersystem crossing rate k;sc (of both S; — Tyand S; — T,) and internal
conversion rate kc:

kNR = kzsc + k1c (35)



It has been found experimentally that &y is temperature dependent as
kg = kl(\)/R + kg €XP(=Ey, 1 kT) (36)

where kyz’ is independent of temperature and the temperature-dependent part is
described by an activation energy Eyz. In most aromatic molecules the k;c does not
depend on temperature because the S; — Sp gap is much larger than A7, and the
temperature dependence of kyz can be attributed to thermally activated S; — T,
intersystem crossing. For benzene and its derivatives, on the other hand, the S; — So
proceeds via an isomeric state and is the main contribution to the temperature dependent
part of kyg.

Theoretical treatment of internal conversion has to go beyond the
Born-Oppenheimer approximation. The electronic wavefunctions w,,i, (where the
subscripts /, u stand for lower and upper) are thus no longer independent of nuclear
coordinates. In organic molecules, the high density of vibrational states merges into a
continuum of states, and we may drop the vibrational quantum numbers for the
vibrational wavefunctions y,, ,. The matrix element responsible for the internal
conversion becomes

H,, = [ (E)x (E)yw, (E,) x, (0)dR (37)

where E;, E, are electronic state energy levels in zero-vibrational states, £ is the
vibrational energy of the upper state and Jy is nuclear kinetic energy operator. The
matrix element is negligible except for cases when E, —E, = E . The rate constant for

the non-radiative transition by internal conversion can be then written as

. . 2
kyg = U"/// JNWudRJZl ZudR‘ p(E) (38)

where p(E) is density of vibrational states of the lower electronic state. Eq. (38) is
formally similar to Fermi’s golden rule and Eq. (20). The difference is in the interaction
Hamiltonian, which is electric dipole for electronic transition and nuclear kinetic energy
for radiationless transition. In contrast to absorption or emission, radiationless transition
occurs between iso-energetic vibrational states of different electronic states, and in an
energy scheme can be represented by a horizontal arrow, as shown in Figure 15.
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2.12. Phosphorescence

Although phosphorescence refers generally to radiative processes between states
of different spin multiplicity, these are in most cases radiative T; — Sy transitions. Since
the T, — Sp transition is electric dipole forbidden, phosphorescence is usually very weak
process with long lifetime that can be observed only when other competing
nonradiative processes are suppressed. This usually means cooling the sample to
cryogenic temperatures to suppress the thermally activated radiationless transitions.

Compared to fluorescence, the quantum characterization of the transition
efficiency is more complicated. One possibility is to define phosphorescence quantum

efficiency ¢p as
Gp=nplng, (39)

where np is the number of photons emitted as phosphorescence and n,4r is the number



of photons absorbed by the molecule that led to the population of the triplet state.
Another possibility is to define phosphorescence quantum yield @, as the number of
phosphorescence photons 7y divided by the total number of absorbed photons n,:

®,=nyln, (40)

Phosphorescence spectrum P(w) is defined as relative phosphorescence quantum
efficiency at frequency @

4. = [ Pe)do (41)

To discuss the transient behavior, let us consider pulsed light excitation that produces
concentration of singlet excited states [*M*], at time # = 0. The rate equations of the
subsequent processes can be written as

.

d j‘; - =k, [\ %] (42)
.

Lk [y, [ar ] “3)

where the superscript 3 in Eqg. (43) refers to the triplet state. Applying the initial
condition [*M*], = 0, Egs. (42) and (43) can be solved to obtain

v *]=%{exm—kpz)—exp(—km} (44)

Upon usual conditions, kr >> kp and (34) simplifies to

[2pr #]= Kl M7 ([kM) " oxp( 4, = Pt expi)

or  1,(t) = 1,(0)exp(~k,0) (45)

in terms of phosphorescence intensity /p. The phosphorescence lifetime or triplet
lifetime s given by

r, =11k, (46)

The actual values of phosphorescent lifetimes vary from miliseconds to tens of seconds.
Phosphorescence spectra are shifted to lower energies from fluorescence and Sp — S;



absorption bands. A few examples of phosphorescence spectra of simple aromatic
molecules are shown in Figure 16.
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The fact that it is possible to observe phosphorescence from T; level even though the T
— Sp transition is spin-forbidden is due to the spin-orbital interactions between the
singlet and triplet wavefunctions. The strength of this interaction increases with
increasing atomic number Z. Aromatic molecules contain only light atoms and their
multiplicity forbiddenness factor fr

(defined as ratio of the allowed to

forbidden transition intensities) is on

the order of 10°. The spin-orbital oor2
interaction can be increased by
substitution of atoms with higher Z, a
phenomenon called internal heavy
atom effect. Another method of
increasing the spin-orbital coupling
and the fr factor is using heavier
atom substitutes in the solvent
molecules. Such effect is known as
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external heavy atom effect. The Wasenumber (cm™)
. Figure 6.4 External heavy-atom effect. S; — T, absorption
eXtema| heavy atom effECt In SO - Tl spectra of 1-chloronaphthalene (20 cm path) as 1, pure liquid;
) ; . . 2, 1:2 volume fraction in CCl,; 3, 1:2 volume fraction in
absorption is shown in Figure 17. C:H,Bry; 4, 1:2 volume fraction in C,Hl; 5, 1:4 volume

fraction in C;H;l (after McGlynn, Azumi and Kasha?")
Another example of heavy atom

induced increase of phosphorescence

emission are metal-to-ligand charge Figure 17 (reprinted from [5])
transfer states of organometallic com-

plexes containing Ru, Ir, Pt and other metals. In such system, the quantum vyield of
phosphorescence may reach more than 0.5 and the lifetime is on the order of
microseconds.



3. Molecular complexes

In this chapter, we will be interested in photophysical effects arising from
intermolecular interactions. By complexes are meant weakly bound numbers of
identical or different molecules N in well-defined geometrical arrangements. The
number N can range from 2 for molecular dimers to ~ 1000 for molecular aggregates or
conjugated polymers. Molecular complexes can be widely divided into ground-state
complexes which are formed in the molecular ground states and keep their arrangement
regardless of the presence of light, and excited-state complexes which are formed only
after the absorption of light by one of the constituent molecules.

3.1. Ground-state complexes: general considerations

Ground-state complexes are held together by weak intermolecular forces (van der
Waals interactions, hydrogen bonds). In such systems, the intermolecular electron
orbital overlap and electron exchange are negligible. Electrons responsible for optical
transitions are localized on the constituent molecules, and the molecular units of the
system retain their individual characteristics. The theoretical treatment of the electronic
states of the complexes can thus proceed in terms of the electronic states of individual
isolated molecules.

It should be noted that that the theory presented here treats the photophysical
properties of the complexes, that is changes in electronic wavefunctions and energies
that occur upon absorption of light. The theory does not deal explicitly with the origin
of the attractive interactions in the ground states, but may add them as parameters. As a
result, the theory can be also applied to electronic transitions in conjugated polymers, in
which the monomer units are joined together by strong covalence bonds, but in which,
from the point-of-view of interactions with light, each conjugated segment can be
treated as an isolated molecule only weakly interacting with its neighbors.

3.2. Molecular dimer

Theoretical treatment of the wavefunctions and energies of a molecular dimer can
be based on the Born-Oppenheimer approximation. The justification for the use of this
approximation will be given later. As a result, the effect of molecular vibrations appears
in the form of Franck-Condon factors that modify the matrix elements of electronic
transitions. We can, therefore, proceed with the theory of electronic states separated



from the vibrational states.

The treatment of the dimer will be eventually extended to aggregates of larger
numbers of molecules. The notation used in this Chapter will be therefore different
from the one used in the Chapter 1 and the same symbols will have different meanings
in the two Chapters. We will consider only two electronic levels of the constituent
monomer molecules. Their ground state wavefunctions will bey,,w,, where the
numerical subscripts refer to the different molecules no. 1 and 2. The wavefunctions of
their excited states will be written with the superscript » (upper) as v,',y, . The ground
state wavefunction of the dimer is a product of the monomer wavefunctions

Yo =vi, Q)

Similar consideration leads to two possible non-stationary excited states either with
molecule 1 or molecule 2 excited

Wiy, OF  y, (2)

Since the two molecules are indistinguishable, the excited state wavefunctions has to be
written as linear combinations of (2)

VY, =ayiy, +byy, 3

with the coefficients a, b to be determined later. The Hamiltonian operator of the dimer
IS

H=H,+H,+V, (4)

where H; and H, are Hamiltonians for the isolated monomers and V;; is an operator for
the intermolecular interaction. Using the Hamiltonian (4) in the time-independent
Schrodinger equation for the dimer ground state

HY,=E,¥, (%)

we obtain for the dimer ground state energy
Eq = ”Vlll//ZHl//ll//Zdrldrz =E + L, +”V/1W2V12‘//1‘//2d’”1d’”2 =E, + E, + Dy (6)

where we have, for simplicity, omitted the notation for complex conjugation. The terms
E; and E, are ground state energies of the isolated monomer and D¢ is energy
correction due to van der Waals interaction in the ground state, lowering the E¢. Writing
the Schrddinger equation for the states (3) we obtain



HY, = E,¥, or Hlayv, +byy;)=Elayiv, +byy;) (7)

Multiplying (7) from left alternately by w w,and w,w; and integrating each time
over coordinates of both molecules leads to a system of two equations

aH,, +bH , = aE,
aH, +bH,, =bE, (8)

where we have denoted

Hy = ”‘/’f‘ﬂzH‘//{l‘//zd’id”z (9)

Hy, = [[wiv,Hyy}drdr, (10)

It follows from the symmetry of the problem that H,, = H,,and H,, = H,,. Requiring
that the determinant of (8) be zero

=0 (11)

gives two excited energy states in the form of

E,=H,+H, and E.=H,-H, (12)
and two corresponding wavefunctions,

¥, =120y, +yws) and W =YN2(pty, ) (13)
Evaluating Egs. (12) using the Hamiltonian (4) we obtain

Ey = B} + E, + [yiv Viyiwodrdr, + [[wlv Voyysdndr,

E} = B} + E, + [[yiv Vyiyodrdr, - [[wiv Vayysdndr, (14)

The first integral on the right side of the equations (14) represents the van der Waals
interaction between an excited state molecule 1 and ground state molecule 2. The last
term in both equations is called exciton displacement or exciton splitting term. It
describes the transition of, or exchange of, excitation from molecule 1 to molecule 2.



Using convenient symbols, the equations (14) can be rewritten as
E.=E'+E,+D,+¢
E.=E'+E,+D,—¢ (15)

We have seen thus so far, that the interaction between two molecules brings about
lowering of their combined ground state energy by van der Waals interaction, and
lowering and splitting

. . Y= 1/\5(,/,;,/,2_%,/,5)E _ of their excited state
L R 5 . . energy  due  to
E

. interaction with light.
g _1/\@(1/”// +'//l//")EE’ The result is
: e schematically shown

£ £ in Figure 18.
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In terms of the optical transition energies between the excited and ground states we can
write

E,—~E,=AE=AE,, +AD+*¢ (16)

monomer

To proceed further, we now have to specify the form of the van der Waals
interaction Hamiltonian 7;,. Generally, this operator includes Coulomb interaction
between all electrons and nuclear particles of the interacting molecules. Using such
operator, the relevant terms cannot be easily evaluated. Instead, the operator is usually
expanded into a series of multipoles, containing monopole-monopole, monopole-dipole,
dipole-dipole, quadrupole-quadrupole, and higher interactions. For neutral molecules
the interactions involving monopoles are zero, and for allowed optical transitions the
dipole-dipole interaction is the dominating term. In a coordinate system where the
transition is oriented along axis x and z is taken as the intermolecular axis, the operator
has the form

2
e o
Via —3le)€£ (17)

Areyr, 7

where each molecule is treated as an electric dipole, 71, is the intermolecular distance
and x;' are the coordinates of electron i of molecule 1. The geometry of the above



operator corresponds to the parallel (also face-to-face or card-pack) type of dimer
molecule. The structure is schematically

A shown in Figure 19.
molecule 2
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Figure 19
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Using the potential (17) we may now attempt to evaluate the exciton
displacement term &.

1 4 4
2 = [ty avsdndr, = —— | wf(zexi jwldrl | w;(zex; szdrz (18)
0712 i J

In the integrals in Eg. (18) we may recognize the transition dipole moments of
individual monomer molecules (as introduced in Chapter 1, Eq. (25)). Using s, s for
the transition dipole moments of molecules 1 and 2, we may write

HH,
o= 19
47zgorl§ (19)

for the case of an interaction of identical molecules. While both transition moments are
oriented along the x-axis, their direction may be chosen arbitrarily. To confirm with the
Fig. 14 (i.e. to ensure that ¥, is the wavefunction with lower energy) we set

b =", (20)

The reason for this choice will be obvious later.

3.3. Selection rules for optical transitions in molecular dimers

Although theoretically there are two distinct excited states in a dimer molecule
(predicted from Eg. (15)), both of them may not necessarily take part in an optical
transition. It is possible to derive a set of simple geometry-based selection rules which
will enable one to determine which dipole transition is allowed by examining the
structure of the dipole molecule.



For the example of the parallel dimer discussed above, we may try to evaluate
matrix elements of the total electric dipole operator of the dimer molecule. The
transition dipoles corresponding to the two excited states are

M'= J‘I\PG (/[’1 + /[‘2 ){Iéd’idrz
wa M [ 2 o

where , /1, are dipole moment operators of the monomers. Using the expressions
(1) and (13) in Eq. (21) we obtain

M' = ]/\/EJ‘WMAQV/fd”l +]/\/EI1//2/}2'//§QI”2 :1/\/5(”1 + llz) (22)
and, similarly,
M’ =YV2(n, —p,) (23)

thus obtaining a simple relationship between the transition dipole moment of the dimer
and those of the constituent monomers. For the optical transition to a particular excited
state of the dimer to occur, the corresponding transition dipole moment must be
non-zero. We have seen that for the parallel dipole p, =—p,, which gives

' 2N
M'=0 and M _ﬁ (24)
Referring to Fig. 14, the absorption to the upper state ', is dipole allowed while that
to the lower state W is dipole forbidden.

The above simple vector treatment can be extended also to the prediction of
the relative energies of different dimer geometries based on the consideration of the
energy of two interacting classical electric dipoles. For a parallel dimer, the energy of
two dipoles pointing in opposite directions is, due to Coulomb interaction, lower than
that of dipoles pointing in the same direction. In contrast, in the serial (or head-to-tail)
dimer, the situation is reversed. The arrangement with both dipoles pointing in the same
direction has lower energy and the transition is dipole allowed. Thus, based on the
knowledge of the geometry of the system, one is able to use vector addition and
classical electrostatics to predict the phases of excited state wavefunctions and
probability of the transition, as illustrated in Figure 20.
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3.4. Molecular aggregates

The theoretical approach developed above for the molecular dimer can be easily
extended to the concept of infinite 1-dimensional linear chain, or molecular aggregate.
Because of the chain infinite length, the lack of boundary conditions makes the model
applicable for very long chains. For aggregates of intermediate length (3 — 10
molecules) the results are not well applicable.

We will assume a linear chain composed of N identical molecules (where N is very
large). The ground state wavefunction is a product of the ground state wavefunctions of

individual molecules

n=1

The excited state can be written as

n=1
n#a

This is an excited state of the aggregate where the monomer molecule « is excited and
other molecules are in their ground states. There are N such products and they represent
non-stationary excited states. Generally, we may write the total excited state as a linear

combination of the states expressed by (26)
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where the coefficient & describes the k™ exciton state (notation used instead of the *,
“ notation for the dimer). Assuming an infinite chain, the magnitude of the coefficients
C. Will be same for all a (no boundary effects) and the coefficients will differ only in
their phases. This fact can be expressed as

r Z exp(27ikal N)D, (28)

where k=0,=1,£2, ..... N/2.

3.5. The concept of molecular exciton

The Eq. (28) describing the molecular aggregate excited state is a linear
combination of excited states of individual monomer molecules represented with equal
weights. The effect of the linear combination is that the wavefunction is a wavefunction
of a collective excitation of N molecules in the chain. The excitation is delocalized over
N monomer molecules and possesses well-defined phases for each monomer. This type
of excitation is called molecular exciton. To distinguish it from the concept of Wanier
excitons used in solid state physics, this exciton is also called Frenkel exciton. The
principle difference from Wanier exciton is that in Frenkel exciton the electrons of the
excited states are localized on individual monomer molecules. The delocalization
mentioned above refers to the excitation that is spread over N molecules. The
delocalization length (or, equivalently the number N) is called coherent length of the
exciton.

Following the procedure used to determine the excited state energies of the dimer,
it is possible to use the wavefunctions (25) and (27) to calculate the excited energies of
the aggregate. The van der Waals interaction potential is again approximated by
dipole-dipole interaction, and as further simplification, the interaction is considered to
take place only between nearest neighbors. The exciton displacement term of the
interaction potential is then expressed as

8a,a+1 = J.q)al/a a+cha+ldr (29)
which describes the transfer (displacement) of the excitation from state with molecule a
excited to state with molecule a+1 excited, that is transfer of excited energy between
neighboring molecules. The exciton state energies are given by



N-1 27k
EX=E. +2 Ccos g 30
E E,a ( N j ( N ) a,a+l ( )

where Er, is the excited state energy of the molecule @, and £ = 0,£1,£2, ..... NI2.
The actual form of the dipole-dipole interaction term depends on the geometry of the
problem. For a linear chain with translation-equivalent components inclined at an angle
a from the chain axis (Figure 21),

Figure 21

the expression (30) can be written in terms of the monomer transition dipole moment
as

N-1 27\ u )
EX=E, -2 cos 1-3cos’« 31
BT ( N j ( N j(ngoﬁ j( ) (D)

The equations (30), (31) represent exciton dispersion relations, that is, dependence of
the exciton energy on k. The exciton energy levels calculated from Eq. (31) for a few

values of «
H-aggregate J-aggregate

are shown in
“ ‘ Figure 22
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The case for « = 90 corresponds to the card-pack arrangement of molecules, often
called H-type aggregate. The case of « = 0 is the head-to tail configuration, also called
J-type aggregate. The Fig. 22 also shows that the same selection rules that were derived
for the dimer can be used for the aggregates. Thus, for H-aggregates the transition to
the lowest exciton level is forbidden and for J-aggregates this transition is allowed. All
intermediate transitions for these two extreme cases are forbidden.

The spread of the exciton energy levels in Fig. 22 is called exciton band structure.
For an N-component aggregate there are N energy levels. The exciton bandwidth is
twice the energy shift component in Egs. (30) or (31); generally, this has a form

bandwidth = 4(N _1j cos( 27k jga . (32)
N N )@

The exciton bandwidth of a linear infinite chain is twice the bandwidth for the dimer of
corresponding structure. This is a result of the nearest-neighbor approximation. Each
molecule in a linear chain has two neighbors, and compared to dimer undergoes 2
dipole-dipole interactions. More exact considerations would show that the longer-range
interactions cannot be neglected. Inclusion of 8 neighbors on each side brings the factor
of aggregate vs. dimer exciton bandwidth to 2.39.

3.6. Spectral properties of molecular aggregates

Spectral properties of molecular dimers and aggregates are determined by their
exciton band structure and corresponding selection rules. In absorption, the spectra of
H-type dimers and aggregates are shifted to higher energies (blue shift), those of J-type
dimers and aggregates to lower energies (red shift). The Kasha’s rule stipulates that
population of the highest (allowed) exciton level of H-type dimers (aggregates) will
quickly non-radiatively relax to the lowest exciton level from where the dipole
transition to the ground state is forbidden. The population is thus efficiently transferred
to a lower-lying triplet state from where efficient phosphorescence has been observed.

Many cyanine molecules are known to form very large aggregates. Although the
total number of molecules in the aggregate does not correspond to the exciton coherent
length NV (due to the presence of deformations and defects along the chain), the values
of NV are still very large (estimates vary between 50 and ~ 1000). Structurally, these are
predominantly J-aggregates. The large coherence length gives rise to some
characteristic spectral features: sharp red-shifted absorption and luminescence band
without vibrational structure, and very short fluorescence lifetime. An example of



J-aggregate absorption
J-aggregate spectra is shown in Figure 23.
monomer Lack of the vibrational
structure is due to the large
delocalization of the
excitation. As a result, the
relative change of nuclear
400 450 W:\égength [n5n§]0 600 650 configuration upon excitation
is much smaller than in the
Figure 23 case of monomer, and the
observed exciton band is a purely electronic 0-0 transition. Further narrowing of the
band is a phenomenon called motional narrowing. It is caused by the disorder in
transition frequencies of individual monomers being averaged by the delocalized
exciton. The absorption band is narrowed by a factor of 1/</N , where N is the exciton
coherence length. Shortening of the excited state lifetime is called superradiance.
Excited state radiative lifetime zz of the monomer is shortened by a factor of 1/N in an
aggregate of the coherent length V.

Absorption

3.7. Excited state dimer: excimer

Apart from ground state dimers and aggregates, there are examples of molecules that
experience the attractive van der Waals
interactions only in their excited states.

2 .
R y=_H Such systems are called excited state
> 472'((:0}"3 . .
5 complexes, and in case of dimers,
GC) . - .
w o\ . E, excited state dimers, or excimers.
D . . .
\ / Schematic potential energy diagram of
/ two parallel molecules as a function of

their intermolecular separation r is
shown in Figure 24. Here, R represents
monomer the repulsive potential in the ground and
excited states, » is the attractive
potential in the excited state, D is the
resulting excimer potential energy.
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excimer

N
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If the excimer energy
D=R+V (33)

is lower than the monomer excited state energy at some value of », a bound excimer
state can be formed.

In the treatment of ground-state dimers we have explicitly assumed that the
repulsive potentials in the ground and excited states were same and dealt only with the
attractive interactions. Making the same assumption here, we can basically follow the
procedure outlined in Section 3.2. for the dipole-dipole interaction V;,. The main
difference will be the absence of the term AD in the Eq. (16) for the dimer transition

energy. We can thus write
2

E,—E,=AE,  +&=AE,  + Lt (34)

monomer monomer 3
Areyr

where 4« is again the transition dipole moment of the monomer. Spectroscopically,
excimers are characterized by absorption spectra that are identical to absorption spectra

of monomers, and by fluorescence spectra that are shifted by the amount . /4zey*.

An example of fluorescence spectra of typical excimer system, the molecule of pyrene
in solution at increasing concentrations (from G to A), is shown in Figure 25.

The solution of pyrene represents an example of inter-molecular excimer. When
the two monomers are attached to each other by a chemical bond (alkane chain) the
resulting molecule can form an intra-molecular excimer state, which is usually
accompanied by a large change in the
molecular geometry.

Relative guanlum inlensity

Figure 25 (reprinted from [5])

Fluorescence spectra of pyrene in cyclohexane at
concentration between 102 M (A) and 10* M (G).
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3.8. Charge transfer complexes

In a mixed solution of electron acceptor molecules (from now on denoted as A)
and electron donor molecules (D) one can observe the appearance of a new absorption
band due to a charge-transfer (CT) state. The pairs of donor and acceptor molecules are
accordingly called charge transfer complexes or, alternatively, donor-acceptor (DA)
complexes.

We may characterize the photophysical properties of the CT complexes without
going into the details of the mechanism of the charge transfer itself. Let us denote D4 a
neutral donor-acceptor pair, and DA™ a pair in which an electron has been transferred
from D to A. We can write ground state wavefunction of the complex as a linear
combination of the neutral D4 and charged state D" 4" wavefunctions as

Y. (D, 4) = a¥,(DA) +b¥,(D"4") (35)
For the excited state wavefunction we can write

Y, (D, A)=a*V, (D" 47 )+b*¥,(DA) (36)

The relative magnitudes of the coefficients a, b, a*, b* characterize the strength of the
CT complexes. For a weak complex a=a*=1 and b= b*=0. The optical transition
then goes mainly from the neutral state DA to the charge transfer state D'4" and is
called charge transfer transition. For quantitative determination of the character of
ground state the ratio

b2
A=
a’ +b°

(37)

is often used. Complete charge transfer ground state is characterized by A = 1, neutral
ground state by A4 = 0. Without elaborating on the theory of the CT complexes we can
write the result for the energy of optical transition as

(Eo1 — ElS)2 + (E01 — EOS)Z
El - Eo

E,=E—E,+ (38)

where the matrix element symbols Ey Ei, Eo1 and S are defined using a complete
Hamiltonian H as



Ey=[W,HYydr, E =[¥HVdr, Ey=|%H¥dr and S=[¥¥dr  (39)

Alternatively, in terms of macroscopic observables, the transition energy can be
expressed as

Eqp=1Ip-4,-A (40)

where I is the ionization potential of D, A, is the electron affinity of A, and A is the
difference in the formation energies of the DA complex in excited and ground states
(Coulomb interaction between the negative and positive ions). An example of
absorption spectrum of a CT

R complex of dimethylnaphthalene
with p-chloranil is shown in Fig. 26.
Similar to excimers, CT
complexes can be further divided
into inter-molecular complexes (such
- as the one in Figure 26) and
2 intra-molecular complexes, where
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vanumper 1007 different D and A parts of the same
Figure 26 (reprinted from [5]) molecule.

3.9. Exciplex

The term exciplex is often used to describe an excited state aggregate of two different
molecules. As in the case of
excimer excimers, the molecules do not
interact in their ground states. The
principle difference is that while the
excimer is bound in its excited state
by exciton (dipole-dipole)
interaction, the main contribution to
the interaction energy of an exciplex
comes from a charge transfer
character of the excited state.

Figure 27 (reprinted from [12])



The situation is schematically shown in Figure 27. It should be noted that the
explanation of the excimer interaction in section 3.7. was simplified in the sense that the
excited state interaction also includes a small charge transfer contribution. Generally,
the excited state wavefunction for excimers and exciplexes should be thus written as

¥, =a¥,(D" A7) +bY,(D A7)+ W, (D A) + d¥,(DA") (41)

where for excimers 4 = D, a = -b and ¢ = -d, with |a* << |c|%.

An example of exciplex emission from the complex of perylene with
dimethylaniline is shown in Figure 28. The figure shows, for comparison, also the
fluorescence spectrum of the monomer perylene (dotted). As in the case of excimers and
CT complexes, exciplexes can be formed either as inter-molecular or intra-molecular
complexes.

Figure 28 (reprinted from [12])




4. Intermolecular photophysical processes

In the previous Chapter we were interested in weakly-bound systems that interacted
strongly via dipole-dipole interaction. The result was a coherent excitation delocalized
over the system and large shift of the system energy levels. In this Chapter we will treat
photophysical processes on pairs of molecules that interact weakly, so that each
molecule of the pair can be considered as an isolated entity. We will be interested in
processes of energy transfer, in which light energy absorbed on one molecule, a donor,
is transferred to another molecule, an acceptor.

4.1. Radiative (trivial) energy transfer

The simplest case of energy transfer is the one in which the donor emits a photon,
the energy transfers space as light, and is absorbed by an acceptor (Figure 29). Light
intensity decreases with distance from the source as 2 (inverse square law) and the
radiative energy transfer efficiency follows the same donor-acceptor distance
dependence. The probability that a photon emitted by the donor will be absorbed by the
acceptor can be expressed as

oc %:B[A]JAFD(CU)&:A (w)dw 1)

FD

DA

where [4] is the acceptor concentration, ¢xp the donor fluorescence quantum efficiency,
Fp(w) the donor fluorescence and &4(w) the acceptor absorption spectra.

At small distances (< ~10 nm) the radiative contribution to energy transfer is
negligible compared to the resonant mechanism discussed in the following paragraph.
However, radiative transfer can be a dominant mechanism of energy transfer in dilute
solutions, where it can influence fluorescence spectra and lifetimes.
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Figure 29



4.2. Forster resonant energy transfer (FRET)

Resonant energy transfer occurs between two molecules via dipole-dipole
interaction. The only condition for this process to occur is that the donor and acceptor
posses strong transition dipole moments. Due to the spin selection rule this condition
usually implies energy transfer between donor singlet and acceptor singlet states.
However, as we have seen in Chapter 2, there are cases where the heavy-atom effect can
partially lift the spin selection rule and triplet-singlet transitions (such as
phosphorescence) can posses significant transition dipole moment. Again, since the
strength of the dipole moment is the only relevant parameter governing the resonant
energy transfer mechanism, transfer of energy, e.g., between donor triplet and acceptor
singlet states can be an efficient process. The resonant energy transfer is schematically
depicted in Figure 30.

e O e e e O
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donor* acceptor donor acceptor*
Figure 30

Resonant energy transfer via dipole-dipole interaction is also being called Forster
energy transfer after T. Forster who first derived the equation for the energy transfer rate.
In deriving the equation, we can begin with a general form of the Fermi’s golden rule
for the transition rate between two quantum states.

T

T, =—
DA 2h2

2
|HDA| 5(”]) - a)A) (2)
Here, the subscripts D and A refer to the donor and acceptor molecules, respectively, wp
and w, are the transition frequencies, /p, is the energy transfer rate constant, and |H4p|

Is the matrix element of the interaction Hamiltonian. Defining the wavefunctions of the
initial 7 and final f'states of the pair of molecules as

Y. =y, Y, =y, (3)

where yw, is a state with donor excited and acceptor in ground state and y , w', isa



state with donor in the ground state and acceptor excited. Since the dipole-dipole energy
transfer takes place uni-directionally over relatively long distances we do not have to
take linear combinations of w,w, and w,y' into account. The matrix element of the
interaction Hamiltonian can be then written as

|HDA| = J'\PfVDAlPidr = _[‘//Dl//ZVDA‘//g‘//Adr (4)

The interaction energy operator Vp, is due to dipole-dipole interaction between
transition dipoles up and g, or in other words, due to the potential energy of dipole
w4 in the electric field of the dipole up. From classical electromagnetic theory, the
electric field of p, can be written as

D
E B 5
D 1 ors ( )

where & is permittivity of vacuum. The interaction energy Vp, is thus

By R
Voa=Ep-p,= 4?[8 r; (6)
0
or for simplicity
K
VDA oc IUDSIUA (7)

where r is now distance between the D and 4 molecules and x is an orientational factor.
With the angles 6p, 6, and &; defined by Figure 31, the orientational factor can be
expressed as

K =C0s#, —3c0sb,,cosb, (8)

Depending on the orientation of the dipoles the factor x can assume values between 4
for parallel orientation and O for perpendicular orientation, as shown also in Fig. 28.




Figure 31

Using now the Eq. (7) in (4) we can write the interaction Hamiltonian as
K u u
|HDA| o r_g_[WDl//A (/JD/JA )l//Dl//Adr (9)
and the energy transfer rate as
Kz u u 2
Ly e r_eu‘ VoW 4 (;UD:UA)'//D'//Ad”‘ 5(0)1) - a)A) (10)

Due to the relatively large distance between D and A the coordinates can be considered
independent and the integrand in Eq. (10) can be separated as

25(500 _a)A) (11)

KZ u 2 u
Iy oc FU V/DzuDlr//Der‘ U Wk Ay

Denoting the matrix element of the transition dipole moments of the donor and acceptor

molecules as
|,UD| = UWDﬂDl/Iger‘ and |,UA| = UWZﬂA‘//AdVA (12)
and using the following property of the delta-function
5(0)D -, ) = J-é(a)D - a’b(a’ -, )da) (13)
0
we can re-write the Eq. (11) for the transfer rate as
2 ©
rDA oc ’:_e“ﬂ0|25(a)0 - a’)ﬂA |25(a) -, )da) (14)
0

The equation (14) already shows the well-known dependence of the transfer rate on the
6™ power of distance ». We can further manipulate the equation using the relations
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which is a consequence of the Eqg. (25) of Chapter 2, and

‘IUDZ‘ oc By, oc Ay (16)

3
w

where By, and Aj, are the Einstein’s coefficients, as defined in Egs. (38) and (43) of
Chapter 1. Further,

g,=r =t an

as seen from Eq. (42) of Chapter 1 and Eqg. (34) of Chapter 2. Combining the
fluorescence quantum efficiency ¢ with the lineshape, as approximated by the delta
function o(wp—wm), leads to the fluorescence spectrum

¢F‘5(a)D —)= F, (o) (18)

Using the expressions (15-18) in the Eq. (14) we obtain for the energy transfer rate

2 ©
K _
T o6 —5— j &, (0)F,(0)o ‘dw (19)
0

T
It is further customary to use a normalized fluorescence spectrum

Fy(@) = Fy(0)/ ¢, (20)

whereby the equation (19) changes to

2

br TeA (0)F,(0)o dw (21)
T 0

1—‘DA oC KG
rtp
The equation (21) now shows the basic physics of the Forster energy transfer. The rate
is proportional to the overlap of the normalized donor fluorescence spectrum and the
acceptor absorption spectrum, decreases with 6™ power of donor-acceptor distance, and
depends on the donor fluorescence quantum efficiency and lifetime, and the mutual
orientation of the donor and acceptor transition dipole moments. The complete

expression for the energy transfer, expressed in the units of wavelength A, is given by
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TEA (A)Fy (M)A dA (22)
0

where N, is Avogadro’s number, and the refractive index n appears because the
interaction between the two dipoles occurs in a dielectric medium rather than in
vacuum.

It is now possible to define the Férster distance Ry as a distance between the
donor and acceptor at which the energy transfer rate is equal to the fluorescence rate of
the donor in the absence of acceptor, i.e. at which I',, =1/7, . It follows that

TgA (A)Fy (M)A dA (23)
0

s (9000In10)x%g,
Ry = 5 4
1287°n"N ,

For a given pair of donor and acceptor molecules the R, is a constant and the rate of
energy transfer is simply given by

Ty = i(&) (24)

One way to experimentally measure the energy transfer is to measure relative
changes in fluorescence spectra of both the donor and acceptor upon excitation of the
donor only. In case of zero energy transfer, only the fluorescence spectrum of the donor
is observed. In case of 100% energy transfer, only the fluorescence spectrum of the
acceptor can be measured. At R, the efficiency of the energy transfer is 50% and the
energy is equally distributed between donor and acceptor fluorescence. Typically, Ry is
on the order of 2 — 5 nm, which is comparable to the size of many proteins and to the
thickness of biological membranes. It is thus possible to measure the efficiency of
energy transfer between donor and acceptor labels in biological samples and to deduce
from the results the distances between, e.g., binding sites on the proteins. Recently,
Forster energy transfer is increasingly being used in the study of biochemical and
biophysical processes, such as protein folding, on single molecule level.

Another way to study the energy transfer process is to measure the fluorescence
lifetime of the donor in the presence of the acceptor, and compare it with the donor
fluorescence lifetime in the absence of the acceptor. With increasing efficiency of the
energy transfer the measured lifetime shortens compared to the case of zero energy
transfer.



4.3. Dexter energy transfer

In donor-acceptor systems where the dipole-dipole energy transfer mechanism is
negligible due to weak absorption or emission transition dipoles the energy can be still
transferred via electron-exchange mechanism, first described by D.L. Dexter. Since the
mechanism involves exchange of electrons between the donor and acceptor molecules,
as schematically shown in Figure 32, it depends on the overlap of the respective
molecular orbitals and is effective only on very short D-A distances. The theoretical
description begins with the transfer probability expressed by the general Fermi’s golden
rule.

2
+‘H;A

2
Ly = ZLI"[ZOH;A )5(600 - a)A) (25)

and

The equation (25) is more general than (2) as it contains both the Coulomb ‘H;A

exchange ‘H 54| Interaction terms. In the treatment of the dipole-dipole energy transfer

the exchange term could be neglected because at the relevant D-A distances it is much
weaker than the Coulomb term. On the other hand, for weak transition dipole moments
the Eq. (9) shows that the Coulomb term is very small and the exchange term becomes
the dominant interaction.
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The exchange term can be expressed as

e
‘HDA

= [ @i OEH i Qv (2)dr (26)

where the indexes 1 and 2 refer to the different electrons originally located on the donor
and acceptor molecules. It is now necessary to include the spin state of the electrons by
including spin wavefunctions y as



y(@)—>v@)x@) (27)

The exchange term now takes the from of

e
‘HDA

= (v (2o QWO 2 OH w5 O 25 Oy, (27, (2)drdo (28)

Since the Hamiltonian in Eq. (28) does not operate on the spin wavefunctions the
integral can be separated as

e
‘HDA

= [ @i OEH vy Ow ,(2dr | 2,225 D 25 Q) 2.,(2)do (29)
The second integral can be re-written according to the electron coordinates as
[ 2@ x5 W2,()do = [ 1,2x.,Q)do, | 2iWxsWdo,  (30)

As a result of the orthogonality of the spin wavefunctions of the same electrons the
expression (30) is different from zero only when

2(2)=x,2) and  yp()=xiQ1) (31)

The physical meaning of the condition (31) is that energy transfer by the exchange
mechanism can occur only when the ground states of the D and A have the same spin,
and at the same time the excited states of the D and A are in the same spin states. The
condition for the ground states is fulfilled automatically since the ground states are
singlets. The energy transfer can thus occur between D and A which have the same spin
multiplicity of the excited states, i.e. between singlet D and A, or between triplet D and
A. Singlet-singlet transitions are often allowed and the energy transfer between excited
singlets is dominated by the dipole-dipole Forster mechanism. The Dexter exchange
mechanism is thus often synonymous with triplet-triplet energy transfer. However, care
must be taken in cases where So-T; transitions are partly allowed (efficient
phosphorescence) or where Sp-S; transitions are forbidden.
The first integral of the Eq. (29) contains the exchange operator

2
e

Hpy=— (32)
Kr

The use of this operator in the Eqgs. (29) and (26) leads to the following rate of energy
transfer by electron exchange mechanism
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The integral in the Eq. (33) contains the overlap of normalized donor fluorescence and
normalized acceptor absorption spectra. Since at least one of these transitions is usually
spin-forbidden, the physical meaning of this integral is to express the condition for the

energy difference between the donor and acceptor excited states. The quantity Z° is a
function of the D-A distance r

7% cexp(-2r/L) (34)

where L is an average Bohr radius for the excited and ground state of the donor and
acceptor molecules, respectively. Since, according to the dependence (34), the energy
transfer rate is an exponentially decreasing function of the D-A distance, energy transfer
by the Dexter exchange mechanism occurs efficiently only over very short distances on
the order of ~ 1 nm.

4.4. Photoinduced electron transfer

In some aspects, the Dexter exchange mechanism of energy transfer is similar to
another light-induced intermolecular process, the electron transfer. Electron transfer is
usually treated as a subject of physical chemistry, and here only the main features of the
process are summarized. The mechanism is schematically shown in Figure 33.
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Compared to the Dexter energy transfer, only the excited state electron is transferred
from the donor to the acceptor molecule. The result is the creation of the D" and A” ions.
As with the energy transfer, the necessary condition for the electron transfer to occur is
overlap of the donor and acceptor molecular orbitals. The dependence of the transfer
rate constant on the D-A distance can be simplified as
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where L is again the average Bohr radius and the coefficient S is a quantity inversely
proportional to the overlap between the donor and acceptor electron orbitals. The Eq.
(35) is the expression of the exponential decrease of electron transfer efficiency with
increasing intermolecular separation. Besides the distance, other parameters affecting
the electron transfer rate are the potential energy functions of the donor and acceptor,
mutual orientation, shape and nodal character of the respective electron orbitals, and
spin states.



5. External field effects

External electric or magnetic fields acting upon organic molecules can change the
energy levels of their ground and excited states. When the changes in the ground and
excited states are different the optical transition energies change, leading to splitting and
shifts in the spectral lines. Spectral changes caused by external electric field are called
Stark effect while those caused by magnetic field are known as Zeeman effect.

5.1. Stark effect

The effects of electric field on the optical properties of molecules can be best
illustrated using classical electromagnetic approach. The nature of the effect will vary
depending on whether the molecule has a permanent electric dipole moment in at least
one of its electronic states.

1. Polar molecules

Let us assume that a molecule has an electric dipole moment mg in its ground state
and a dipole moment mg in its excited state. Energy of an electric dipole m in the
electric field F is generally a dot-product of the two vectors

E=-m-F (1)
The energy levels of the molecular ground and excited states in an electric field F will
be accordingly modified as

Ef=E)-m,-F and E.=E)-m,-F (2)
The optical transition energy in the electric field is the difference

AE" =Ef —Ef =AE*~(m,-m,)-F 3)

where AE® is the energy of the transition in the absence of the electric field. The Eq.
(3) shows that the transition energy in the presence of the electric field is shifted by an
amount which is proportional to the difference Am of the permanent dipole moments in
the molecular ground and excited states. Spectrally, the absorption or fluorescence peak
is shifts proportionally to the first power of F, and the phenomenon is accordingly
called linear Stark effect. Whether the shift is to the blue or red, i.e. to higher or lower



energies, depends, as obvious from the Eq. (3), on the relative magnitudes of m¢ and
mg. Molecules with stronger dipole moment in their excited states will experience red
spectral shift.

2. Non-polar molecules

For molecules without permanent dipole moments the linear Stark effect is zero.
In such molecules, the external electric field produces an induced dipole moment
proportional to the polarizability o

m™ = —aF (4)
The energy of the induced dipole moment in the electric field F is then according to (1)
E=aF’® (5)

The optical transition energy will again be modified as
AE" = Ef — E[ = AE® - AaF? (6)

where A« is now the difference between the polarizabilities of the ground and excited
states. The spectrum is shifted by an amount which is proportional to the second power
of the electric field intensity and the corresponding phenomenon is called quadratic
Stark effect. The direction of the spectral shift again depends on the sign of A« and can
be either blue or red.

The above discussion is based on considering the effect of electric field on one
molecule. In practical experiments on organic molecules in condensed phase there are
large numbers of molecules oriented randomly with respect to the field F. Moreover,
local dielectric constant inhomogeneities around the molecule and symmetry of the
molecular environment will almost invariably induce a permanent dipole moment in
non-polar molecules even in the absence of the external electric field. The common
observation is thus of broadening and splitting of the optical spectra rather than pure
shift. The effect most often observed is linear Stark shift with small contribution of the
quadratic part. Purely quadratic Stark effect has been observed only recently using
single aromatic molecules in organic crystals at low temperatures.

The Stark effect has an important application in the experimental technique of
electroabsorption where the difference in absorption spectra with and without the
presence of the electric field is measured. The form of the difference spectrum as either
first or second derivative of the original absorption spectrum allows, e.qg., to distinguish



Frenkel exciton from charge-transfer states.

5.2. Zeeman effect

Similar to the Stark effect, the Zeeman effect describes the influence of external
magnetic field on the molecular optical properties. The main difference is that each
electron involved in the optical transition possesses a magnetic dipole moment in the
form of the orbital moment and spin moment. In many cases, the contribution from the
spin moment is negligible and the phenomena observed can be explained based on the
orbital magnetic moment only (normal Zeeman effect).

Generally, the energy of a magnetic dipole moment p in external magnetic field B
Is given by

E-—p-B ™

The magnetic dipole moment of an electron associated with its orbital angular
momentum L is expressed as
—e

uorbital = 2m

e

L (8)

For a magnetic field pointing in the z-direction we may take the z-component L, of L to
write

E=_—L.B=mu,B ©)
2m

where we made use of the definition of Bohr magneton s

eh
g = (10)
m€
and the relationship between L. and the orbital magnetic quantum number m;
L =mh (12)

The equation (9) gives an expression for energy levels spaced equally due to the
quantum number m;. The displacement of these energy levels from the zero-field value
gives the observed multiplet splitting of spectral lines in Zeeman effect.

In cases where electron spin contributes to the observed Zeeman effect the



equation (9) must be replaced with a more general relation
Ezzi(L+2S)-B=gLmejB (12)
m

where g; is a geometrical factor (Lande’s factor) accounting for the different
orientations of the orbital and spin moments, and m; is the total magnetic moment
quantum number. Historically, the effect of magnetic field with the contribution of
electron spins has been called anomalous Zeeman effect.



6. Principles of high resolution optical spectroscopy

Conventional absorption and fluorescence spectra provide only limited
information on the electronic and vibrational structure of molecular states. Usually, it is
possible to assign the observed absorption bands to individual singlet states S;, S, and
higher, and to obtain Franck-Condon factors for limited vibronic transitions. To reveal
the wealth of information contained in the optical spectra it is necessary to remove the
various types of broadening of the absorption or fluorescence bands. This Chapter
introduces principles of several spectroscopic methods that enable study of the detailed
structure of vibronic transitions of complex molecules.

6.1. Homogeneous and inhomogeneous spectral broadening

In Chapter 2 it was shown that the shape of an absorption spectral line
corresponding to the transition between two quantum energy levels has a Lorentzian
profile, and that commonly observed absorption spectra of aromatic molecules in
solutions are envelopes of a large number of Lorentzian lines originating from different
vibronic transitions. In usual absorption measurements samples with concentrations on
the order of 10° M or higher are used, which means that 10 - 10°° molecules are
probed at the same time. From this point, it is interesting to look at the effect of
ensemble averaging of optical spectra. Figure 34 shows a fluorescence spectrum at
room temperature of carbocyanine molecules adsorbed on a glass surface at ensemble
concentrations (left) and a corresponding fluorescence spectrum measured from a single
molecule (right). The comparison shows that the spectra are identical which is an
example of homogeneous broadening of optical spectra.
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Fluorescence [a.u.]
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Figure 34 (reprinted from K. Weston et al, J. Chem. Phys. 109 (1998) 7474)



In addition to the multitude of vibronic transitions active at room temperature, Doppler
or collisional broadening in the case of gases or solutions, or interaction with matrix
phonons in the case of molecules doped into solid matrices are the main contributions to
the observed homogeneous spectrum at room temperature. Thus, to decrease the
homogeneous linewidth, it is necessary to decrease the number of active phonon or
vibronic modes. This can be done by lowering the temperature of the experiment down
to the temperature of liquid helium, i.e. to 4.2 K or below. The effect of lowering the
temperature on the ensemble absorption spectra of pseudoisocyanine molecules is
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Figure 35

shown in Figure 35. At the temperature of 4.2 K all optical transitions are essentially
represented by zero-phonon lines; still the absorption spectra at 300 K and 4.2 K are
almost identical. This is a result of inhomogeneous broadening present at the cryogenic
temperatures. The origin of inhomogeneous broadening is shown schematically in
Figure 36. In the solid matrix, each molecule is located in slightly different local

environment.
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Figure 36




Mechanical strain and electrostatic interactions modify differently the electronic energy
levels of molecules at each location and cause each molecule to have slightly different
optical transition energy. Even though the optical transitions themselves now appear as
narrow Lorentzian lines, the overall spectrum is an envelope of spectral lines of a large
number of molecules, as shown in Fig. 36.

The inhomogeneous broadening can be partly or completely removed using
special spectroscopic techniques. Those most often used will be introduced in the
following sections.

6.2. Fluorescence line-narrowing

The method of fluorescence line-narrowing is based on the excitation of
fluorescence spectra at low temperatures with spectrally narrow laser light. The laser
selectively excites only those molecules in the inhomogeneous manifold whose optical
transition is in resonance with the laser frequency. The result is the appearance of a
series of sharp fluorescence lines corresponding to the vibronic transitions
S,(v'=0) - S,(v=1). An example of the effect of excitation light on the structure of
fluorescence spectra is shown in Figure 37 for the molecules of a bisanthene derivative
at 4.2 K. Excitation with a broadband conventional source leads to the usual broad
fluorescence bands. Excitation with laser light tuned to the peak of the lowest energy
absorption band is accompanied by the appearance of a series of sharp lines both in the
ol main band and in the first
excitation vibrational band. The intensity of

the lines is determined by the

laser respective Franck-Condon
excitation

factors. Even though the lines

are narrow, the fluorescence
line-narrowing does not enable
the determination of the true
homogeneous line due to

Fluorescence

residual inhomogeneous
— T T broadening, matrix dynamics
550 600 650 and power broadening.
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Figure 37

6.3. Spectral hole-burning



The technique of spectral hole-burning is in many respects similar to the method
of fluorescence line-narrowing. The sample is again irradiated with spectrally narrow
laser light tuned within the inhomogeneous profile. Only molecules with their optical
transition in resonance with the laser frequency will absorb the light. In contrast to the
previous method, however, the excitation light is very strong and leads to a permanent
change to the absorbing molecules. The change can be photochemical of photophysical
(non-photochemical) in nature and the phenomena are accordingly called photochemical
(PHB) and non-photochemical hole-burning (NPHB). The light-induced change leaves
the number of molecules absorbing at particular frequency altered and the
corresponding spectrum shows a dip, or “hole” at the frequency. An example of spectral
hole in the absorption spectra of J-aggregates of pseudoisocyanine molecules is shown
in Figure 38.
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The profile of the spectral hole, when measured carefully, is a mirror image of the
absorption lineshape and provides information on the homogeneous width of the
spectral line at low temperatures. The linewidth can be expressed as

1 1
+

12 = -
4 2nl;, T,

1)

where T; is the excited state depopulation time (fluorescence lifetime) and 7>~ is phase
relaxation time (pure dephasing time) describing phase relationship of the excited-state
wavefunctions. Measuring the spectral hole profile and its development in time thus



provides a tool to study various excited state relaxation processes, as well as relaxation
processes occurring in the solid matrix.

6.4. Single molecule spectroscopy at cryogenic temperatures

The inhomogeneous broadening can be most obviously removed by measuring
spectra of individual molecules. The large width of the inhomogeneous band now
provides an advantage as it is not necessary to reduce the actual number of molecules in
the measured volume to 1. Figure 39 illustrates the effect of decreasing concentration of
molecules in the sample on the optical spectra. The numerical simulation in the left part
of the figure shows that single-molecule lines start appearing
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Figure 39

at the wings of the inhomogeneous band even when there are thousands of molecules
present in the excited volume. The experimental results in the right part of the figure
correspond nicely with the numerical predictions. The single-molecule absorption
(excitation) spectral line at cryogenic temperature has a Lorentzian profile as predicted
by theory, with a width close to the radiative lifetime. Compared to the previous
spectroscopic methods which are based on spectral selection of large numbers of
molecules with the same transition energy due to accidental degeneracy and which



provide information on the average values of physical observables, single-molecule
spectroscopy provides qualitatively different information based on parallel
measurements on large numbers of individual molecules, resulting in distributions of

actual values of physical observables.

6.5. Single-molecule detection at room temperature

Though strictly speaking not a high-resolution spectroscopic technique,
single-molecule detection at room temperature retains the advantage of removing
ensemble averaging from the measured phenomena. At room temperature, however, the
spectral selectivity due to the inhomogeneous broadening is no longer applicable and
individual molecules for experiments must be isolated spatially within extremely diluted
microscopic samples. Also, the requirements for high absorption cross-section, high
fluorescence quantum efficiency and high photostability are much stricter at room
temperature.
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